Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2e71b66ced4dba46be311f463541d2ecae4d1918cce5076a5bf2047c6c0cc619
MD5 9534560ccdb48144cd8779ca7faaf86a
BLAKE2b-256 192ac77805235b5aebf7a37022c6babef82941b13fffed498ef30543412abf9b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63e3303e4f4b216de40bb20ad7ae205fa40c91137196a56fbd2d7266c0051202
MD5 70780b7e697451a79144da0e9165b1f0
BLAKE2b-256 4681fa4997d2e6d4e3640d7b0ff21111548254f6afd31f391876081bf9201e4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7075de6a629b20ef5f9ecd46a045d9828ad508ec107816b6e0a35377ad1f219
MD5 179b4c6706b3cf52015241c9c53147cb
BLAKE2b-256 3310fee9cad8320af5d83ac22c92ab1506422b2e82cfc9401a183ad2f8feaf41

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f78789fac457606d6eca8a9bf05b541fcc5178292e3f94f95c1195d4c633f7b3
MD5 444e7de7baa85b3e1754dc082273ea49
BLAKE2b-256 f0a41be47d4fce28cfcbf3aa0a2d8bfecf76b4f7d6a8a8b20ed4e998bcfa4676

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcefa3aca0d68917e5693019c310e1beb5dff566997908b16b9e6dd873614a66
MD5 963a2ba729e25e6bceb6d9714ba27204
BLAKE2b-256 b4516c5d77831d3bfb9ab5551cc95fec288a75f7d69f2081ff428efc974d082b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e0750bb308c7b65e1b8fb81c28c8270d8dc5c2551996881fd519e04e41fdde3b
MD5 45d20c6c5927cc7eac4ef715aad51081
BLAKE2b-256 e1583432b6a8bec0a0eb746398e70a34b363bc9e77972b40d05fb863aed7ed37

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9507cae36c286930615d44d4daceb570b1b351a2120dd190e5dec4ee9dc9437
MD5 4ae0bf7320c2bd03e4931c39fe34843b
BLAKE2b-256 f0b54a8edf4bc8a40055b8db1136b4af0f26a74656c4db3034208aa5b1d5564c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1ab6894e90dd4c98d746f0832d29fc1713797005d0f62243736916f2695bf51
MD5 bec1cab94eb6cbee5b11c80a987e3028
BLAKE2b-256 c787d978fa8457bfd16105010726b115f466f1df10077439a8d7921d0a5ed34f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88187bd137d357aeb5dc0f199defad267187cdd7262aabb32b6d956c6c26708b
MD5 85d37044bd59b056dbf9db01d1a529f5
BLAKE2b-256 2e98423fd8d67113129e7661b48089919e0b29680b660abdd0569169e51c4a3e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0273a0b5bf3a0dc77a853c4bf7e2d71172acc0dbd2b6ea939f50deb36fdf4793
MD5 a467eaf490fefe568b608c234d73bc9b
BLAKE2b-256 0fce4a9c7a01b2fc6e19054e24e64fc9a7b803fe1a3f25808627fc519413b583

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1b47b05d2bbf6cbd963dfb723ec0aa8204277706ca81317567ff535f75ded8eb
MD5 3c78fc1d051e823a335c0771faf76426
BLAKE2b-256 99d6e5decf041c51fa95f66d0c520e7f4adb6e21ba17463931cd8249648b4c99

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 656f5b12c83b662219836dc887bbdf699d251298d66ca410426d6bf23e0147ba
MD5 6d3a30897f635c524e9697f0e1596085
BLAKE2b-256 af16dd3900bb90466f4b4da2481388eb93ad1dc5191b1ef62a56f7bf67210bfa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a360a383e8f8017c8e6b5a0b45b78d3ba8a15cfc837768dad7ef907d7ef10da7
MD5 3154ed90f88c532b6a29327935779abe
BLAKE2b-256 835f6b47b0b3216b4b111fc566ec8af28cc17fe6207a36bbefc904caa93a0498

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 206d7f4cb2dffdb7759fc0e7030354c8a1179a278ee352b3e20526745c362760
MD5 aca4770e7d17c0bbbf860738d84dc8d3
BLAKE2b-256 bf71f4ef9068adfc3e60403c6227c95adb1f6eda385fa0f926cc762d9e3dbb27

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01f46df31391cb1cfb1e01a3e713a28d36abee62ad3c7b9b65a96802899457de
MD5 5ebc51c4ac753224b6c13e9226a64eb1
BLAKE2b-256 bb17e9f6c9aa9e73fa35027d0da376ed272edb72a2e60ae83dcfbf5d52d6b951

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 378759b4f13a12579d6d6defa757a08c2a394ed9ef0b90169b9e00434a76abb2
MD5 f0d52ac16c681e53d4a58f70f192be8d
BLAKE2b-256 babb849f9ebcb4cffaf73afdcce0c28a8be39f865b2b9cd43e34ec6cc226f9cd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a3d6c9f0a7f55979e734993c27e3d286b56576e74f135cf217c3e8d1dd023d3
MD5 1b0a4c5b64d228b6c204636883a724f3
BLAKE2b-256 8e4e2ec5086781225cb67a2ff4faf1fcd5f65fb344090b77e05f457e854916f3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1208a39bb8df4d358c52e89855fc4d1f26b3b5ae57413768df2e1b8f2dedc95b
MD5 c3aa458cadf44bfb14e7baedef7fb830
BLAKE2b-256 955e25130341dda8ed77bfb3f9fd3f7cb4ce23ab8442c0367102338ca8f3dc64

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8da922d1340d364b46fe27879791aa17b338ab7867a61f57d209b4f3f8bad25d
MD5 f790e9a450e58d54c5258cb91c079ce4
BLAKE2b-256 6071b9a49da54a0b158c8326d85692496511076f3619fe6a6d2b88ad234e2685

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.0.9.dev202305151683703926-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb04d3f64cbc3840c03ff1e2ae43edb9d987bd58b5dcc403c100db31e278ee6f
MD5 f0c6e6a0a6332d58d8b73f66be90f613
BLAKE2b-256 8ad7d14bc1cf4d92d35e18c19779bbfff4fc17c3d6edd2f873cd7cb0f170f243

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page