Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da63b327c235161640998908dc0996ffe1342b11d1fc2e506088f92b393c5cc3
MD5 6e794fadd2756dd42369b32b87b9119f
BLAKE2b-256 e1a2bfded1f25587bc0195a8c239db48fb20226e0e96a04942897601301af72f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2f4077da28203cfe7afef7bf665c43458c64057de764c8d0505275502da33f5
MD5 fa9c44737581c231468ee61960cf28a2
BLAKE2b-256 532790e1325af28f0696097e1bd963d28a5ab83b926f8f8c6a733cf88bdff39a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7f8b8381bc7c76adef81dac9bcb4449b8adb4a0262bf7cf9f9415973ae73e0a
MD5 aa69179e657ca2f0546568de009ab044
BLAKE2b-256 d85e69437a4ac3adddbae64fe55b5ded1dbdf178f06cdeaa0496d8f22491248b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a278f0a83e346aae49d9521d545ac264436117f533c5874597b86532510a6d9
MD5 8961f9369f37def65137acd4a98c34a1
BLAKE2b-256 b2adf882e4d14cce7745b69998072fe45d7e0cb275f7c7bc1de4346b18626689

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da8e8dfa23651d06aaaa1935cb693f1218c237e6865f459559affe70d67fa10f
MD5 e108859d8514ff25030f95170a88867c
BLAKE2b-256 96d616e645cc9cc04f9651b69358d2bcd1f848421b8369f95886ad3aafad914d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 77554bd313643637a439c4d46c52c7eb799611f6cac5d4c458926a327a3041aa
MD5 f1a8c06d352985cb9600b7c78154a99f
BLAKE2b-256 bcb2a304b74aa4e17a0b6f30eeecefb2a8caf1d17ac637257e09202861209ce7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41952d092586105a0cf89dd906331dce5d73853267e116b92c5e1fe4df82e4a0
MD5 6c35570063293df9940ccfeb2c8d8070
BLAKE2b-256 043d31255d951ae046bed8a4922a3244448312d7961d0b915880cff5bc8aa46c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c08d5b976108506883736bd39a92a5bd644835bc58c2b7c0220569349671dba0
MD5 960f946688d0f747c9dad97f2f0c2caf
BLAKE2b-256 d8c386720b917852f0dd6c4eaad4f69848efeaeb039e6dbe1a6c16d01c920034

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ea0a4adf96d4048c021b88db9017009529ab2233ce3359a7cdf5a41b517ed4e
MD5 02464909f5093539c6ea73052f5e757a
BLAKE2b-256 c638603a3e30da67cdc489552c787cbb724f79d7d1af51cc4a212eb20e012a12

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 388725656b4d2438d1f40881b9df20eb89e73efc7095548ffe584e78dee56eb1
MD5 20f0dc96ef745f62dbb39811e2a20ce2
BLAKE2b-256 2f5e2d44d4df492714cddaccf56360c3ad837f37f61e6da31ee338abd77499d8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c38bf24189fff812535dec6528cca4d6e26b968d0735c16654af49d0d5f59120
MD5 f54702fb56c7e3f04bb9ed7d059552b6
BLAKE2b-256 9aeac23326d19665caca2ce571c1d84bce41ed3565e2c96309f584fccdefd259

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2e4551536485bebc5de40aaf6f41219c0b5c72ce17a660f75d700e13c32eb79
MD5 c76c03eb96e4a60b9994f97f8a628546
BLAKE2b-256 6bfc270419c203e9e42eeadc792a9ef7a3df4f415505929feaf22ec12fe29a7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4fd81d1cbfcdccb338ab14db38c21c36c2bd236815fd957a6749ce0ca66723ab
MD5 eb2cc6158b57987b8f64ad45509f0e64
BLAKE2b-256 373cbe499e7ff3207e90d0fcf8fc663a4b47068f0fccb6a47c77244ff3ec390e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54045db3c604a3168044e623c09ee8c10f64a6029707bb291ee3a32dbe78a32f
MD5 fd91a640934cf9cd0a54d827ec135517
BLAKE2b-256 a288d71e7ddb40f306664466c58ce4a6618525fb83aba88fb67d56bb58ae6588

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcb475dfa952d0bd29391ba21ebd80a594a2b02a7da19d9ee75e368fde6a95bf
MD5 1ad709e015b1e3fd61ba413cb276f8bd
BLAKE2b-256 5180b9150181c0d49e38eb4613a99ed6795e2ac9cc61ceac0e393dd3118d1de4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8aab092af782192944f41e5ad039ba13365910d029d8b4272011635af43c7c98
MD5 8dbda64e55db2ecf4acc8a9cb112d48b
BLAKE2b-256 ac86e7d13326ba0dd1de38d9e4f089a2b9b081ae5c5961f4b63cf624e30cf50a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66eb6f0405dd046db73475913c73e0b98f5f11646e7da0913c3c85fa1af590cc
MD5 adb517a3e66dcd6a2eeae32a5f05a9a7
BLAKE2b-256 1a293de5b328454eeb9f825b3422d07a14c953ca55c997429615e2557feec5dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5496e1c5ef6e2f9a966a4500183e6976dcbe8a9082692a32b5fefee082c0678c
MD5 785405eaa149bf4e9e3c0aa20c62b5c2
BLAKE2b-256 d683b8b34171aa593ea667428a7afbfbd6d8516b448a576f25ce2e7a988ed598

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9c19a5eb4fe41b5cb162441d0154267bac847287e39884de73eb5db3df321a1
MD5 aa00ed70b80f24b9ca68d7d996d1f2cd
BLAKE2b-256 723197bd1b9ef2d5832e146c8d5beb9ad9aee752967e23e6644b77b6bb0e4bbf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307031687849391-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47b1a0439299060a1dc559dc3360e95a3b9c049064acb9ab839bd9c72a7fe15c
MD5 d83769b7ae124d83cf65a744027be5fd
BLAKE2b-256 83365d2f7de24197df869a067b39ce1b3bc35214937e7441b0772684a849fba3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page