Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33022f93ec47d012a10d916bd8f13864b75413c1985f15b8d22e01889be9eaa3
MD5 f38bea76a5119ec9083c6c560ca3376e
BLAKE2b-256 3c23c183083bae2edab1c19318e6cff666f6cb8a394ead79dc1e6878e18e2f1f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f60729b79b8f262a04db83863e6944745e31390747a15ab6232d9ab8edf9aa7
MD5 b4f0b8957b16c7e02a1e89a2f7006902
BLAKE2b-256 46986929905c238422dadbff183a1662552f0c59fdda19f0aed603c9ace91f06

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d89e1e4b727b696663f4c2235ee39a2e2c72908244365b32fd27a46c3f2590c
MD5 cc0944a8371325aae2b6d9c0a3e04ac9
BLAKE2b-256 df50fcf65249e1ffa30df9af47a5c33474978bb450d67b6b12186fc8bd8e716e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4856f338d3bf435295a2b6a4fc11a19a9186c294601e18e13a3c06e1262b7be7
MD5 e7de86c2b7bc9c25fb284622020ea0cb
BLAKE2b-256 3efb172d824e461a6ecab5affd86b8db94072305a0de6468a651ac503bd9ef96

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9de923b94b9ec945bfa3732bc4ac6b710ca84b370191c837deed58498c33aba9
MD5 495ecbb396eb549882c1d87e0325d038
BLAKE2b-256 afa51e0e09d82f320b68f4e45bb68b17b1b1c47e10081c5c3f6f820860066f68

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eff09361513aa7b80bfcfb78903c974467067caf997ec95939905974095e82ae
MD5 09fc8fafcaf197866b74699cf81a27e3
BLAKE2b-256 8ef22769b3ef9f7489c39aa803df5d05c1c7211e59f97d5c6f7ed60c3f4bc6a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74bdb0bbac447ff40a8f3e1a48719babb7256889cb4d520d726493407acee4a0
MD5 b909efadd68137f9217a37b065d78d99
BLAKE2b-256 77088ca8417ccea4361b9b4391f3b6125d8f65a696736898a32a4863f4034b28

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9806f108158c190b17079ababaaa88a1dbeb43750fa383a495b549cd99fcd0b8
MD5 3940689067118fab41b0f5ba41f55915
BLAKE2b-256 4a75b77449a2c47fa8d34e1c94905a1bdc08571ebcab8b9c7c7817f86d57469f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb451daf0a55483dbab40050fa3411367bc055f1f3540e77f27577daebc1643d
MD5 6b40d91fe1e58ffdd7cc0fbc3c13e7f2
BLAKE2b-256 bd71dcf5d4697010889fd452b5508fd66672996c233ceb64442240e972c491bd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308271692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fd1ffa4156cf33490dce2721823e739494f5e3b4419db3d0bb7338f9ba0a528
MD5 d941ce9e7f824e9df75ab41bfb83e79b
BLAKE2b-256 4c0f964646a190a0bc96dc8132ebe8573dccbeaaeaa91d1e6ef9b01760adce5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page