Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d71793e83dc96a6ddd1eb58c0e28c60206c23a327a98a5f4d20a1db36cc59844
MD5 e501a76a0eeba349b27518f3babd1dda
BLAKE2b-256 31dbb91d5bf9814a1c9f3927543b95ea625157d15f60c96d3ecb5e5d3147de0d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d437db8d90119f7daec5e8f128df8d955749f2897a3a6a8f3af1d220e8943f58
MD5 58f457d2b41af2fc8826c9b0752d95fe
BLAKE2b-256 526c3c1ce316e461f0dcd27864235e4514c528eef0e6168bb742912637490e3e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e818629a2ebf86af56e0a22431c7bf589e5ae094b45fa599ef9ef7963aa09e6
MD5 5a11bbdb7529c40b61a6586c82376491
BLAKE2b-256 c26aa3a58039736f57a87357a362c8d709b798445a2ed95ebc00b4669fe23562

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e15a45b23641f1cea33136ab7bd1fd607dc848b87b87645d746bec2ad37a01de
MD5 62e7df1955f179e1d347c9e83262a841
BLAKE2b-256 c59a97a6c73ac654c1a2302bc8f3b4b84158cb1d59f9600dbb756562945a6c03

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c3f8debdaea1aec6d47768d79ef7d5efc526e1cd32ef0d2e3a17156eb207011
MD5 f5db4f0c784c656a93fe0514e826fc1f
BLAKE2b-256 67f6e8040ca98deaf1bbd416786954d4bcf8911dc34ab9baa65978a69221bfd2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0a463c859f3e6486c127b079b84cb5deb04aaea33f92441ed2901341651d983
MD5 aae92c58b0c710d6af2ebefc1b4b9647
BLAKE2b-256 a870abfed52f9cd2e7a9945b50f5a0f59b6aa97f5f12c3add908e100ae20a2c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1814aa25fd32f7c5311af260bea84829ac2d48293dffc2f1599e30b9024ce454
MD5 54b3d517257ecb820bae6d9fca147718
BLAKE2b-256 c28291802c744d0681ed42bce585e7738271222d548bcb3d1e72039e60fd56aa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26157433fa48d527b7bd514b83fe93f7a55e2313ee099fde03db1b383e4b861a
MD5 12f4ca6d5180ebc8920b18558bfd956e
BLAKE2b-256 ff6430d12c6d80469311fd0d8fa37df74b379742035811d9a458c7cf4e3b7750

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c236ca6060c8e4a3d2ec4851cb61faeef29c0b5ac0f63499d372d74773a833d
MD5 5b2c265864bd569a6e40bf1eef3a2509
BLAKE2b-256 d2f12b6bd0596fe7b9642712d95fb5fc3319244fba43a5ad7daff87c43ff7757

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5c77d019fd6bfc2dd534c655b67b2b3fc98414e905353ab9c6644c5e0a9f72a
MD5 ec962f12c74fc990c670bb7aaefa6ddc
BLAKE2b-256 4952a3dfe759a684ef073a4a738767b721dd4856c0fdf818bd641fd8f5d5531a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc6a29ed7fac8feee32a3e02842225de9a0b500428966ecb7646cbecaf36278f
MD5 7401317571b4059cf69e012d2cd9f1d2
BLAKE2b-256 600d4620d0dc00136ceccad0ae71acc8030fcb3698329a0442a2a497a4ea1cc5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309071692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f3a795aedfa37d12377e1962b5275abfb5d00467ad574efb2c2698238fba4e7
MD5 8ce10bea0525c3e86f4ed631c30f346d
BLAKE2b-256 693756f2921971e3f0a84478fd064a96f6aad5427e37a1bdc9cddc2f9d386324

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page