Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd859aee1e57062d39d2f26bdace4eed4345b161fa658353d183eaf2ca578b9a
MD5 0ec1dca3f5e3013a7e1524187d124ac5
BLAKE2b-256 e858104bf3156a7fcbe42a31b6a71a21eebeb23ab1186dc056e85bbe95b82f0a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e02ecde359b9b52db3c7bf308ce32550da225f6c82efc643e25ef94d56537573
MD5 6e45a22c9a6bf057623de635f85ec11c
BLAKE2b-256 299e1d86dc1c78f4f66fc63db91c98fb918231f4df46b0b949a826f8b628f833

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8cea9574e8b4c9f5ef70d8ec6d3e73704945eda7b7b3c3d782d6cd13d86c4936
MD5 2cf24e301b0d86d0c064b46436b7093f
BLAKE2b-256 c7f47f62deca31d0f53102385b488edc81ce4ec39c03b17198ff16b75cc1bd70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfd55342dcb960873b2aaeecde816878cc8def0edece5fc42225b9b234d60a2a
MD5 85702c607d759fc95ff94eb5fe18f2b6
BLAKE2b-256 ec17f6a86ecb2126c28ccac7d990c302926f9f86013af1e99f596ba489e21443

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66cc06e396d0fc1196b011f9ed1815d6fc9fab4796693cf8fab09fc7dd6d7eb7
MD5 a15b982708014ea6a639b9968f2155e9
BLAKE2b-256 4ad89540b825acb407b0ce54e58ae45a297f8b4c995d8632cbc88add9eba3121

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cc5a852ca5da271206fac4f1208b8b8e0e7f170e47acde286a390c1991832805
MD5 7fb651c34ca167bbd542840556a6b141
BLAKE2b-256 4d5163b082f26408e7b6f1fa45d16434963956517b02722224c6739accdf50d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a045bf93875eb49f74429560ccaf3386444fae0bf2ef0d6e2de948eda769dbb
MD5 b39d3e224b9db73696af5370bc88d1d1
BLAKE2b-256 c8cb10378aa664ac8b21d2c9bb1348aa0e86c3494601361720a41d04884c1c44

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13983fd38ba816f83d14895c3e1f423de7a71c3f7e3fa662f86161065962a176
MD5 758a8fb0700ced52997ffcccd2ee9f7b
BLAKE2b-256 45f1bf799071ee1dfc70b601a66ff9136bf2ec74cfee538ef8c4b651c26266d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bdc3ada35f081bb1d52bd14a6545bbb8411d4ca943737ca26b132e449a12b09
MD5 e4ca27616805a278388d34df0ece73e8
BLAKE2b-256 fdef2f800d10177cd705c46ec6e8c1b6414e8d0d0b629c74d131c610ce40f37a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cad73b1358d13a6d1886eb3caf65a703aa0dc9966303bcd8177a4bffd2abe90
MD5 54df4461da0cd91b59829bdada6ceefe
BLAKE2b-256 9b2ac11a4186d7739a65e38c3a9fbb8b1eab973e0b0c1c194cf16efd6f993182

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be3a0be13ee6fab60f59944eaf6617c5ce2a6e02699359cf6248601625ef33f1
MD5 1927f5115e4cdb6355eaeaff7b217991
BLAKE2b-256 f277f0f60c75ebbf9d3fd00763a91c905e7a5ba2746c6b9bb40c7daed8d70981

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29af2ab54826f98072b9dc6cad08dce49c0aad56bbe6c0d386807b5a618a995f
MD5 d46b887051cf40d6b2bad6c96fe77506
BLAKE2b-256 00d8df772fa240cab96c1bc500e764e11a9d715d93d68614a897ad4185edb29c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20ef1dc4d055d48a8d2d42e5ac58cdf72bc2ca409f502113d3bc210b5c9e33fd
MD5 89b32df166fe94fa6182047f7e2e488f
BLAKE2b-256 264fd74b7e632a53d0bbc629e0d9abf0765f38ef06ad782335f218c8082168fd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 012510ed5e88d94638d098e34f3cfcf5b1c5187424138407c9ae60613d5bf1de
MD5 2ae392a9dd82a803cece4a286f21d46b
BLAKE2b-256 d211891c11d63cd8f4cceed1d29dd06e1933bbeb28a5d98633c37b061caf34a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4d3ca4d53fac9e20263e8c0ef7cca9245fd01c9d3c62f4e14dd2a972a35472d
MD5 c0504d059cebd1ba16528d8a13df88a0
BLAKE2b-256 f60ae1261a3848c1848b199465bac7645a9711e5e4f161750910c39e7d6f51a9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8bc337e97614ad48751ba0a8488229f01935256b5a5c0949816776b48d12e12f
MD5 43b938f653e320781534bada2ed9c876
BLAKE2b-256 ad40a9e23d45ccadeb60934bae0fa9e2b27a13d9822b753830a541a6556e1f43

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1e6da1d1eec1bd428cf82c0fdaaee28c8af5bedd08b926140a1674a809b5a00
MD5 0315a2d6557f4b687a19a7602459313e
BLAKE2b-256 d1fa67aebd59fab0b241fdb25fe4f2dcd08c8d70e0ef2122b85c98f414597b7a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fca4dbdee287804e7202d7a3d20232304329d78f837769b744bc5a91d4f96572
MD5 b371fe65558a1f1cebadd22f4aad636d
BLAKE2b-256 1ac7fde436c1412d5222fb655f512e9ab30ec3513dff4cfb41aa016ab8e9070d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07bd81a813a5f431c1ed37156f41efecc26922a3da4ee3c6162d5c41eee11dbe
MD5 b83b18e0528c8c790497692b609ca4fa
BLAKE2b-256 ab66b4bb3befd0e3ff8ee9ce0cc6c0a186dd5e53d971095b858d3a7caad75ad3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309281692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afbfe25bf50f1cb331a85b6dfe42d5df3576b8859b0633bfce6af4032b499363
MD5 60a0f1b4123c028f16069243b213408d
BLAKE2b-256 a0cd505275f806797e176f2c127d98a6440a82b15b1478a2e4b6f9a1af206adc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page