Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

pyAgrum

pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of aGrUM allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API.

Example

import pyAgrum as gum

# Creating BayesNet with 4 variables
bn=gum.BayesNet('WaterSprinkler')
print(bn)

# Adding nodes the long way
c=bn.add(gum.LabelizedVariable('c','cloudy ?',["Yes","No"]))
print(c)

# Adding nodes the short way
s, r, w = [ bn.add(name, 2) for name in "srw" ]
print (s,r,w)
print (bn)

# Addings arcs c -> s, c -> r, s -> w, r -> w
bn.addArc(c,s)
for link in [(c,r),(s,w),(r,w)]:
bn.addArc(*link)
print(bn)

# or, equivalenlty, creating the BN with 4 variables, and the arcs in one line
bn=gum.fastBN("w<-r<-c{Yes|No}->s->w")

# Filling CPTs
bn.cpt("c").fillWith([0.5,0.5])
bn.cpt("s")[0,:]=0.5 # equivalent to [0.5,0.5]
bn.cpt("s")[{"c":1}]=[0.9,0.1]
bn.cpt("w")[0,0,:] = [1, 0] # r=0,s=0
bn.cpt("w")[0,1,:] = [0.1, 0.9] # r=0,s=1
bn.cpt("w")[{"r":1,"s":0}] = [0.1, 0.9] # r=1,s=0
bn.cpt("w")[1,1,:] = [0.01, 0.99] # r=1,s=1
bn.cpt("r")[{"c":0}]=[0.8,0.2]
bn.cpt("r")[{"c":1}]=[0.2,0.8]

# Saving BN as a BIF file
gum.saveBN(bn,"WaterSprinkler.bif")

# Loading BN from a BIF file
bn2=gum.loadBN("WaterSprinkler.bif")

# Inference
ie=gum.LazyPropagation(bn)
ie.makeInference()
print (ie.posterior("w"))

# Adding hard evidence
ie.setEvidence({"s": 1, "c": 0})
ie.makeInference()
print(ie.posterior("w"))

# Adding soft and hard evidence
ie.setEvidence({"s": [0.5, 1], "c": 0})
ie.makeInference()
print(ie.posterior("w"))

LICENSE

Copyright (C) 2005-2024 by Pierre-Henri WUILLEMIN et Christophe GONZALES {prenom.nom}_at_lip6.fr

The aGrUM/pyAgrum library and all its derivatives are distributed under the LGPL3 license, see https://www.gnu.org/licenses/lgpl-3.0.en.html.

Authors

  • Pierre-Henri Wuillemin

  • Christophe Gonzales

Maintainers

  • Lionel Torti

  • Gaspard Ducamp

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum-1.15.0-cp312-cp312-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum-1.15.0-cp312-cp312-manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12

pyAgrum-1.15.0-cp312-cp312-manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.12

pyAgrum-1.15.0-cp312-cp312-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum-1.15.0-cp312-cp312-macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum-1.15.0-cp311-cp311-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum-1.15.0-cp311-cp311-manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11

pyAgrum-1.15.0-cp311-cp311-manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.11

pyAgrum-1.15.0-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum-1.15.0-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum-1.15.0-cp310-cp310-manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10

pyAgrum-1.15.0-cp310-cp310-manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.10

pyAgrum-1.15.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum-1.15.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum-1.15.0-cp39-cp39-manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9

pyAgrum-1.15.0-cp39-cp39-manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.9

pyAgrum-1.15.0-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pyAgrum-1.15.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c18b1e345c87ded8b90327ac58d4780ca783b08a0fab58421162a9995b525b10
MD5 c171ddd5494237b8a45b134af0dcf1e8
BLAKE2b-256 92a585742827036b63f7d4369e976ea6d2ac9954c25a7c2bfb9456e9abd1256d

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22b309dc60850f5088d56742fed8dbb14dc64f7603d0503229cd3104900c4d25
MD5 5cf44f1638814d01aa3f69c1a6c2d271
BLAKE2b-256 0f56e696e575af0e86e986308f04f70a1f6dd17227fa1a2b89bc84e3c045670b

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e30bbc3e3df590dd2ea0765b6ccf499fa5d706e5d4ee86871ed4902e337e4882
MD5 f77b69452d171381ac0e5be302424c8c
BLAKE2b-256 ad2e5271e053552a9454ae1e4ac9cca9283afbcfc42b1e730acc6eded96d8ad1

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 528bc421e74ed4a8144446de2545ac5da53e633661dd7a9dcc3989316d90c581
MD5 4a4c2afa880e7446d278b3fdf665928d
BLAKE2b-256 e289454760cb6f4915e031aee9330e4ad861962c7c435df62e0b801358c07cf1

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6d6e43816e9ab23998ccebdb9fb4a3525eecb8f5ae88d9553779cb239b884da
MD5 6de091cce0815f0d0f2cbcdd6fd15c13
BLAKE2b-256 a7aee2e76e2d8e7dee8d2e08a721a20506fc2fb9d7a551098f4d5a8916373d3a

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fe015d99ffb6566b19397c8d26473a6741dc53766976fc5aa593fd8e84e51c14
MD5 fb65df909fee53b20ef6961a729d9e6f
BLAKE2b-256 b03007b0e3591b89d94abffb8581e8e5f609b21c7b06078655ccda64513f2546

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb5ca8e724514bfeb4049be1c24d4c65a47be6c858adca45e3aaa402c061eef7
MD5 00ab20b831d1a08f30c63ba013383192
BLAKE2b-256 9a177f520ce4190ce310229ee183299c928d4bc4da012fcf3ffa0c4ca010c87d

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd28cbf0171a8c93aead78b4f1dd18e2223209abdeadc2cb53c9331f1bdf71cc
MD5 f0514a0fa48883071f8edcd0cc0688ef
BLAKE2b-256 821b4f3c0bd1ed1177fca94694ac97a3c128096bc980ac2d81b105fcecefec8a

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1aa4132df926788345a406720987bd9bebe085e1e4b0209b444759f30ceeb7a
MD5 62b631d71d2a39fe3c6552bf362790e4
BLAKE2b-256 5bf7816e6be045d44dddd181db83def5b5094dfd378dbdc8ecdbce2c96ecaefb

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee12f3509257107c3df0db9d1ae42da9d278b2970802ea5d83ab8aedd7ccd9f8
MD5 ad47949806510c455ab6c734b582fe0a
BLAKE2b-256 562cc929a3449389b8c78264a727fac0631307f02a5ba0fad7ffa90b031a707f

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8de18e470c17dc99cfeb6b8866207dcf2c84c1f1b9adf4cb2e9018ba8e5be736
MD5 de87fe5a265c06ec7e9bda50e553e5dc
BLAKE2b-256 51c123666924b72eccda0a7a0da177cf0dabf656278f73ba20d436542bf3c4fc

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2bd2530f53ef210cd54aafbba7d5b8e6789b4bd0a4298760a985815fe1086d2
MD5 4a7a58dad90f5a7da5362f398c180c2d
BLAKE2b-256 e722e09cb0003ce5bd109e3763c5b2b599dd022c3dd932faca5524b1f20a6276

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7cbcc4f2042e34fcbe83e618c0377eb2303979c6278238f1baf038e2bb9faab
MD5 ca90d2209c0a6421225ded3e469b87bc
BLAKE2b-256 f1a6ddd4aadb5d7001d623539b11a3b65f5826c289ed1a15bfd5db1f3597237b

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58e78a7a92c82900a906177759ee3174e25309db1b3deba515e158bb64e53b1e
MD5 d7dd903d1c4db1717f4624f19c94cd28
BLAKE2b-256 66d61666b87c74c91040524cdf9c585a0984f94bf05226dd3fa3f74a2bac6072

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5af666f6cd353b31a5f3e15b1d2bc8ca3cf985ecce49645311c64f7f4ceafb5
MD5 4997532971ce31d21612880a68814ad9
BLAKE2b-256 b9046cdabb111517a47df73afc739fe47d8da6011f8cfc76154b21c68bec936e

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyAgrum-1.15.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pyAgrum-1.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 140fed4e7b079a5d43d5ea4a9159144f5347a0e4e11204ab4d312acdaa646928
MD5 bb504c15eeeb6a0ec15fe1f7feb12491
BLAKE2b-256 49d1efe20ac0952bbe503922511c8b7f142831bf4ac5b96686bff1c467f0edd3

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 511c38aa0ebd5071922c7d269dd8115c6aa4a26845dcc9cb3d9788b2bb1a3161
MD5 6f8363c734d27c640eb79a2d7bd2c650
BLAKE2b-256 0bf63db4ad45dc0443e0e540ccf1f08943e0c5f7832086bf4c7541ac753325ab

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 020c68a439b30d31302c67948379deb1f0351f37876f08d9301a8b2368637a1e
MD5 9052e08a4f81c3a1103b9856488ef739
BLAKE2b-256 2f381fb319e80e509e37540460357cc094a41ef1290cafbd0071888ab62d9401

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0da46e218c278793d43ae15e89a155ee5028ae5f20220947ece9f78892d73b2
MD5 81d9b8e0cb4e4757b2e092e01a755802
BLAKE2b-256 ec1aea83943b90a01d1bae8f225eb9547984fceee563468e1b795b77cda8d8e8

See more details on using hashes here.

Provenance

File details

Details for the file pyAgrum-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee1c3e6d6de4ba85fa09d23610b6da1b1058a6778d6dc5cece3552df0bfab130
MD5 0c8b539560fc8dbf9513abc08bd13942
BLAKE2b-256 cf46c6c82df32bf8cd028be2a4f85d370d577640cf457ffcacb675f8fbcda6a5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page