Skip to main content

A package for fast operations on 1-dimensional genomic signal tracks

Project description

pyBedGraph

A Python package for fast operations on 1-dimensional genomic signal tracks.

Features

  • Finds the mean, approx. mean, max, min, coverage, or standard deviation for a given interval in a bedGraph file
  • Partly written in Cython for speed improvements
  • Can look up exact statistics of 1 million regions in ~0.26 second on a conventional laptop
  • An approximate mean for 10,000 regions can be computed in ~0.0012 second w/ error rate of less than 5 percent

Drawbacks

  • Uses memory to load files
    • 16 bytes per line in bedGraph file
    • 4 bytes per basePair in every chromosome loaded
  • Loading the bedGraph file can take up to a minute or two
  • Only works with sorted bedgraph files

Installation

Dependency requirements:

  • Numpy v1.16.4
  • Cython v0.29.13
  • pyBigWig v0.3.16

With pip:

pip3 install pyBedGraph

Usage

Download the test files here:

https://thejacksonlaboratory.ent.box.com/s/3jglutwf3d54pnomnp33ivo7a9546vhe

Create the object:

from pyBedGraph import BedGraph
from logging.config import fileConfig

fileConfig('default.conf')

# arg1 - chromosome sizes file
# arg2 - bedgraph file
# arg3 - (optional) chromosome_name
# Just load chromosome 'chr1' (uses less memory and takes less time)
bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph', 'chr1')

# Load the whole bedGraph file
bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph')

# Option to not ignore missing basePairs when calculating statistics
# Used the exact same way but produces slightly different results
inclusive_bedGraph = BedGraph('myChrom.sizes', 'random_test.bedGraph', ignore_missing_bp=False)

Choose and load a chromosome to search for:

bedGraph.load_chrom_data('chr1')
inclusive_bedGraph.load_chrom_data('chr1')

Load bins for finding mean:

For approx_mean:

  1. Smaller bin size -> more accurate but slower
  2. Larger bin size -> less accurate but faster
bedGraph.load_chrom_bins('chr1', 3)
inclusive_bedGraph.load_chrom_bins('chr1', 3)

Choose a specific statistic to search for:

  • 'mean'
  • 'approx_mean' - an approximate mean is faster than exact mean, with < 5% error rate
  • 'max'
  • 'min'
  • 'coverage'
  • 'std' - (population standard deviation)

Search from a list of intervals:

import numpy as np

# Option 1
test_intervals = [
    ['chr1', 24, 26],
    ['chr1', 12, 15],
    ['chr1', 8, 12],
    ['chr1', 9, 10],
    ['chr1', 0, 5]
]
values = bedGraph.stats(intervals=test_intervals)

# Option 2
start_list = np.array([24, 12, 8, 9, 0], dtype=np.int32)
end_list = np.array([26, 15, 12, 10, 5], dtype=np.int32)
chrom_name = 'chr1'

# arg1 - (optional) stat (default is 'mean')
# arg2 - intervals
# arg3 - start_list
# arg4 - end_list
# arg5 - chrom_name
# must have either intervals or start_list, end_list, chrom_name
# returns a numpy array of values
result = bedGraph.stats(start_list=start_list, end_list=end_list, chrom_name=chrom_name)

# [-1.    0.9   0.1  -1.    0.82]
print(result)

Search from a file:

# arg1 - interval file
# arg2 - (optional) output_to_file (default is True and outputs to 'chr1_out.txt'
# arg3 - (optional) stat (default is 'mean')
# returns a dictionary; keys are chromosome names, values are numpy arrays
result = bedGraph.stats_from_file('test_intervals.txt', output_to_file=False, stat='mean')

# {'chr1': array([-1.  ,  0.9 ,  0.1 , -1.  ,  0.82])}
print(result)

Sample Tests (from included test files):

# [-1.    0.9   0.1  -1.    0.82]
bedGraph.stats('mean', test_intervals)

# [-1.          0.9        0.1.         -1.          0.8076923076923077]
bedGraph.stats('approx_mean', test_intervals)

# [0.         0.33333333 0.25       0.         1.        ]
bedGraph.stats('coverage', test_intervals)

# [-1.   0.9  0.1 -1.   0.7]
bedGraph.stats('min', test_intervals)

# [-1.   0.9  0.1 -1.   0.9]
bedGraph.stats('max', test_intervals)

# [-1.          0.          0.         -1.          0.09797959]
bedGraph.stats('std', test_intervals)
# [0.    0.3   0.025 0.    0.82 ]
inclusive_bedGraph.stats('mean', test_intervals)

# [0.         0.3        0.00833333 0.         0.7       ]
inclusive_bedGraph.stats('approx_mean', test_intervals)

# [0.         0.33333333 0.25       0.         1.        ]
inclusive_bedGraph.stats('coverage', test_intervals)

# [0.  0.  0.1 0.  0.7]
inclusive_bedGraph.stats('min', test_intervals)

# [0.  0.9 0.1 0.  0.9]
inclusive_bedGraph.stats('max', test_intervals)

# [0.         0.42426407 0.04330127 0.         0.09797959]
inclusive_bedGraph.stats('std', test_intervals)

Benchmark:

Actual values are found from the stats function in pyBigWig with the exact argument being True. The error for exact stats will be ~1e-8 due to rounding error of conversion of bigWig and bedGraph files.

Alternatively, one can make actual values be pyBedGraph's exact statistics.

from pyBedGraph import  BedGraph
from graphs import Benchmark

bedGraph = BedGraph('mm10.chrom.sizes', 'ENCFF376VCU.bedGraph', 'chr1')
bedGraph.load_chrom_data('chr1')
bedGraph.load_chrom_bins('chr1', 100)

# arg1 - BedGraph object
# arg2 - bigwig file
bench = Benchmark(bedGraph, 'ENCFF376VCU.bigWig')

# arg1 - num_tests
# arg2 - interval_size
# arg3 - chrom_nam
# arg4 - bin_size
# arg5 - stats (optional) (Default is all stats)
# arg6 - just_runtime (optional) (Default is False)
# arg6 - bench_pyBigWig_approx (optional) (Default is True)
# arg6 - make_pyBigWig_baseline (optional) (Default is True)
result = bench.benchmark(10000, 500, 'chr1', 100, stats=['mean'])

for key in result:
    print(key, result[key])
# formatted
# mean {'run_time': 0.002971172332763672, 'error': {'percent_error': 1.1133849453411403e-08, 'ms_error': 1.1558877957200436e-15, 'abs_error': 5.565259658128112e-09, 'not_included': 0}}
# pyBigWig_mean {'approx_run_time': 0.570319652557373, 'exact_run_time': 0.5670754909515381, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}


# Test all statistics
result = bench.benchmark(10000, 500, 'chr1', 100)

# mean {'run_time': 0.0033969879150390625, 'error': {'percent_error': 1.1133849453411403e-08, 'ms_error': 1.1558877957200436e-15, 'abs_error': 5.565259658128112e-09, 'not_included': 0}}
# pyBigWig_mean {'approx_run_time': 1.4938299655914307, 'exact_run_time': 1.4855470657348633, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}
# approx_mean {'run_time': 0.0029401779174804688, 'error': {'percent_error': 0.05871362950772767, 'ms_error': 0.0007750126193535608, 'abs_error': 0.017845196959357015, 'not_included': 107}}
# max {'run_time': 0.003038167953491211, 'error': {'percent_error': 2.1245231544977356e-08, 'ms_error': 9.128975974031677e-13, 'abs_error': 6.218157096711807e-08, 'not_included': 0}}
# pyBigWig_max {'approx_run_time': 1.4961540699005127, 'exact_run_time': 1.5022919178009033, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}
# min {'run_time': 0.002947092056274414, 'error': {'percent_error': 2.3296755440892273e-10, 'ms_error': 9.931400247350677e-19, 'abs_error': 7.883071898306948e-11, 'not_included': 0}}
# pyBigWig_min {'approx_run_time': 1.4919359683990479, 'exact_run_time': 1.4932668209075928, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}
# coverage {'run_time': 0.002975940704345703, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}
# pyBigWig_coverage {'approx_run_time': 1.4844129085540771, 'exact_run_time': 1.5427591800689697, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}
# std {'run_time': 0.010123968124389648, 'error': {'percent_error': 0.0008802452423860437, 'ms_error': 3.5123006260771487e-07, 'abs_error': 0.0004987475752671237, 'not_included': 0}}
# pyBigWig_std {'approx_run_time': 1.5250320434570312, 'exact_run_time': 1.4730277061462402, 'error': {'percent_error': 0.0, 'ms_error': 0.0, 'abs_error': 0.0, 'not_included': 0}}

Reference

pyBedGraph: a Python package for fast operations on 1-dimensional genomic signal tracks, Zhang et al., bioRxiv, 2019

Bug reports

To report bugs, contact Henry (henry.zhang@jax.org) and Minji (minji.kim@jax.org) or visit the Issues page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyBedGraph-0.5.36.tar.gz (356.8 kB view details)

Uploaded Source

File details

Details for the file pyBedGraph-0.5.36.tar.gz.

File metadata

  • Download URL: pyBedGraph-0.5.36.tar.gz
  • Upload date:
  • Size: 356.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.16

File hashes

Hashes for pyBedGraph-0.5.36.tar.gz
Algorithm Hash digest
SHA256 2c1c34c5bbdf8665f7a54ecd4c8603d2aa2fd914d610b670a1d9b7d992bd2cf3
MD5 8f5b91cf879ae3f18d105586e864036c
BLAKE2b-256 1408266c18ddcd55292724b99b2a23c545733099f594fce84987ee66eea52cea

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page