Skip to main content

Ceteris Paribus python package

Project description

travis codecov Documentation Status Downloads

pyCeterisParibus

Python library for Ceteris Paribus Plots. See original R package: https://github.com/pbiecek/ceterisParibus

Setup

Tested on Python 3.5+

PyCeterisParibus is on PyPI. Simply run:

pip install pyCeterisParibus

or install the newest version from GitHub by executing:

pip install git+https://github.com/ModelOriented/pyCeterisParibus

or download the sources, enter the main directory and perform:

https://github.com/ModelOriented/pyCeterisParibus.git
cd pyCeterisParibus
python setup.py install   # (alternatively use pip install .)

Docs

Latest documentation is hosted here:

https://pyceterisparibus.readthedocs.io

To build the documentation locally:

cd docs
make html

and open _build/html/index.html

How to use Ceteris Paribus profiles?

Prepare data

df = pd.read_csv('../datasets/insurance.csv')
df = df[['age', 'bmi', 'children', 'charges']]
x = df.drop(['charges'], inplace=False, axis=1)
y = df['charges']
var_names = list(x.columns)
x = x.values
y = y.values

Train models

def linear_regression_model():
    linear_model = LinearRegression()
    linear_model.fit(x, y)
    # model, data, labels, variable_names
    return linear_model, x, y, var_names

def gradient_boosting_model():
    gb_model = ensemble.GradientBoostingRegressor(n_estimators=1000, random_state=42)
    gb_model.fit(x, y)
    return gb_model, x, y, var_names

def supported_vector_machines_model():
    svm_model = svm.SVR(C=0.01, gamma='scale', kernel='poly')
    svm_model.fit(x, y)
    return svm_model, x, y, var_names

Wrap models into explainers objects

(linear_model, data, labels, variable_names) = linear_regression_model()
(gb_model, _, _, _) = gradient_boosting_model()
(svm_model, _, _, _) = supported_vector_machines_model()

explainer_linear = explain(linear_model, variable_names, data, y)
explainer_gb = explain(gb_model, variable_names, data, y)
explainer_svm = explain(svm_model, variable_names, data, y)

Single variable response

from ceteris_paribus.profiles import individual_variable_profile
from ceteris_paribus.plots.plots import plot_d3

cp = individual_variable_profile(explainer_gb, x[0], y[0], variables={'bmi'})
plot(cp, show_residuals=True)

Single Variable Plot

Local fit

from ceteris_paribus.select_data import select_neighbours

neighbours_x, neighbours_y = select_neighbours(x, x[0], y=y, n=15)
cp_2 = individual_variable_profile(explainer_gb,
        neighbours_x, neighbours_y)
plot(cp_2, show_residuals=True, selected_variables=["bmi"])

Local fit plot

Average response

plot(cp_2, aggregate_profiles="mean", selected_variables=["age"])

Average response

Many variables

plot(cp_1, selected_variables=["bmi", "age", "children"])

Many variables

Many models

cp_svm = individual_variable_profile(explainer_svm, x[0], y[0])
cp_linear = individual_variable_profile(explainer_linear, x[0], y[0])
plot(cp_1, cp_svm, cp_linear)

Many models

Model interactions

plot(cp_2, color="bmi")

Model interactions

Multiclass models (classification problem)

Prepare dataset and model

iris = load_iris()

def random_forest_classifier():
    rf_model = ensemble.RandomForestClassifier(n_estimators=100, random_state=42)
    rf_model.fit(iris['data'], iris['target'])
    return rf_model, iris['data'], iris['target'], iris['feature_names']

Wrap model into explainers

rf_model, iris_x, iris_y, iris_var_names = random_forest_classifier()

explainer_rf1 = explain(rf_model, iris_var_names, iris_x, iris_y,
                       predict_function= lambda X: rf_model.predict_proba(X)[::, 0], label=iris.target_names[0])
explainer_rf2 = explain(rf_model, iris_var_names, iris_x, iris_y,
                       predict_function= lambda X: rf_model.predict_proba(X)[::, 1], label=iris.target_names[1])
explainer_rf3 = explain(rf_model, iris_var_names, iris_x, iris_y,
                       predict_function= lambda X: rf_model.predict_proba(X)[::, 2], label=iris.target_names[2])

Calculate profiles and plot

cp_rf1 = individual_variable_profile(explainer_rf1, iris_x[0], iris_y[0])
cp_rf2 = individual_variable_profile(explainer_rf2, iris_x[0], iris_y[0])
cp_rf3 = individual_variable_profile(explainer_rf3, iris_x[0], iris_y[0])

plot(cp_rf1, cp_rf2, cp_rf3, selected_variables=['petal length (cm)', 'petal width (cm)', 'sepal length (cm)'])

Multiclass models

Acknowledgments

Work on this package was financially supported by the ‘NCN Opus grant 2016/21/B/ST6/0217’.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyCeterisParibus-0.4.tar.gz (46.2 kB view details)

Uploaded Source

Built Distribution

pyCeterisParibus-0.4-py3-none-any.whl (52.4 kB view details)

Uploaded Python 3

File details

Details for the file pyCeterisParibus-0.4.tar.gz.

File metadata

  • Download URL: pyCeterisParibus-0.4.tar.gz
  • Upload date:
  • Size: 46.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for pyCeterisParibus-0.4.tar.gz
Algorithm Hash digest
SHA256 20449717305f704a3bd5b77c696a504327963c3d4dfc5d5ab09982895fd14b71
MD5 63d14107fccf6ce5ee8544d748c4d392
BLAKE2b-256 fe4b03265ff3490b7dd273196905d845e1689b020737506f018c619a961bf5ce

See more details on using hashes here.

File details

Details for the file pyCeterisParibus-0.4-py3-none-any.whl.

File metadata

  • Download URL: pyCeterisParibus-0.4-py3-none-any.whl
  • Upload date:
  • Size: 52.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for pyCeterisParibus-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 ed8f5f33738570794371dcd719d89c195366ef015406206de641bfbb26bb0ad7
MD5 02d04384d5281ce4590f4fea962ba3cb
BLAKE2b-256 d8ad03b5e26332ea807849c58b06f4debefb13a14a757829b018a621cf445462

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page