Skip to main content

Circular visualization in Python

Project description

pyCirclize: Circular visualization in Python

Python3 OS License Latest PyPI version conda-forge CI

Table of contents

Overview

pyCirclize is a circular visualization python package implemented based on matplotlib. This package is developed for the purpose of easily and beautifully plotting circular figure such as Circos Plot and Chord Diagram in Python. In addition, useful genome and phylogenetic tree visualization methods for the bioinformatics field are also implemented. pyCirclize was inspired by circlize and pyCircos. More detailed documentation is available here.

pyCirclize_gallery.png
Fig.1 pyCirclize example plot gallery

Installation

Python 3.9 or later is required for installation.

Install PyPI package:

pip install pycirclize

Install conda-forge package:

conda install -c conda-forge pycirclize

API Usage

API usage is described in each of the following sections in the document.

Code Example

1. Circos Plot

from pycirclize import Circos
import numpy as np
np.random.seed(0)

# Initialize Circos sectors
sectors = {"A": 10, "B": 15, "C": 12, "D": 20, "E": 15}
circos = Circos(sectors, space=5)

for sector in circos.sectors:
    # Plot sector name
    sector.text(f"Sector: {sector.name}", r=110, size=15)
    # Create x positions & random y values
    x = np.arange(sector.start, sector.end) + 0.5
    y = np.random.randint(0, 100, len(x))
    # Plot lines
    track1 = sector.add_track((80, 100), r_pad_ratio=0.1)
    track1.xticks_by_interval(interval=1)
    track1.axis()
    track1.line(x, y)
    # Plot points 
    track2 = sector.add_track((55, 75), r_pad_ratio=0.1)
    track2.axis()
    track2.scatter(x, y)
    # Plot bars
    track3 = sector.add_track((30, 50), r_pad_ratio=0.1)
    track3.axis()
    track3.bar(x, y)

# Plot links 
circos.link(("A", 0, 3), ("B", 15, 12))
circos.link(("B", 0, 3), ("C", 7, 11), color="skyblue")
circos.link(("C", 2, 5), ("E", 15, 12), color="chocolate", direction=1)
circos.link(("D", 3, 5), ("D", 18, 15), color="lime", ec="black", lw=0.5, hatch="//", direction=2)
circos.link(("D", 8, 10), ("E", 2, 8), color="violet", ec="red", lw=1.0, ls="dashed")

circos.savefig("example01.png")

example01.png

2. Circos Plot (Genomics)

from pycirclize import Circos
from pycirclize.utils import fetch_genbank_by_accid
from pycirclize.parser import Genbank

# Download `NC_002483` E.coli plasmid genbank
gbk_fetch_data = fetch_genbank_by_accid("NC_002483")
gbk = Genbank(gbk_fetch_data)

# Initialize Circos instance with genome size
circos = Circos(sectors={gbk.name: gbk.range_size})
circos.text(f"Escherichia coli K-12 plasmid F\n\n{gbk.name}", size=14)
circos.rect(r_lim=(90, 100), fc="lightgrey", ec="none", alpha=0.5)
sector = circos.sectors[0]

# Plot forward strand CDS
f_cds_track = sector.add_track((95, 100))
f_cds_feats = gbk.extract_features("CDS", target_strand=1)
f_cds_track.genomic_features(f_cds_feats, plotstyle="arrow", fc="salmon", lw=0.5)

# Plot reverse strand CDS
r_cds_track = sector.add_track((90, 95))
r_cds_feats = gbk.extract_features("CDS", target_strand=-1)
r_cds_track.genomic_features(r_cds_feats, plotstyle="arrow", fc="skyblue", lw=0.5)

# Plot 'gene' qualifier label if exists
labels, label_pos_list = [], []
for feat in gbk.extract_features("CDS"):
    start = int(feat.location.start)
    end = int(feat.location.end)
    label_pos = (start + end) / 2
    gene_name = feat.qualifiers.get("gene", [None])[0]
    if gene_name is not None:
        labels.append(gene_name)
        label_pos_list.append(label_pos)
f_cds_track.xticks(label_pos_list, labels, label_size=6, label_orientation="vertical")

# Plot xticks (interval = 10 Kb)
r_cds_track.xticks_by_interval(
    10000, outer=False, label_formatter=lambda v: f"{v/1000:.1f} Kb"
)

circos.savefig("example02.png")

example02.png

3. Chord Diagram

from pycirclize import Circos
import pandas as pd

# Create matrix dataframe (3 x 6)
row_names = ["F1", "F2", "F3"]
col_names = ["T1", "T2", "T3", "T4", "T5", "T6"]
matrix_data = [
    [10, 16, 7, 7, 10, 8],
    [4, 9, 10, 12, 12, 7],
    [17, 13, 7, 4, 20, 4],
]
matrix_df = pd.DataFrame(matrix_data, index=row_names, columns=col_names)

# Initialize Circos from matrix for plotting Chord Diagram
circos = Circos.initialize_from_matrix(
    matrix_df,
    space=5,
    cmap="tab10",
    label_kws=dict(size=12),
    link_kws=dict(ec="black", lw=0.5, direction=1),
)

circos.savefig("example03.png")

example03.png

4. Phylogenetic Tree

from pycirclize import Circos
from pycirclize.utils import load_example_tree_file, ColorCycler
from matplotlib.lines import Line2D

# Initialize Circos from phylogenetic tree
tree_file = load_example_tree_file("large_example.nwk")
circos, tv = Circos.initialize_from_tree(
    tree_file,
    r_lim=(30, 100),
    leaf_label_size=5,
    line_kws=dict(color="lightgrey", lw=1.0),
)

# Define group-species dict for tree annotation
# In this example, set minimum species list to specify group's MRCA node
group_name2species_list = dict(
    Monotremata=["Tachyglossus_aculeatus", "Ornithorhynchus_anatinus"],
    Marsupialia=["Monodelphis_domestica", "Vombatus_ursinus"],
    Xenarthra=["Choloepus_didactylus", "Dasypus_novemcinctus"],
    Afrotheria=["Trichechus_manatus", "Chrysochloris_asiatica"],
    Euarchontes=["Galeopterus_variegatus", "Theropithecus_gelada"],
    Glires=["Oryctolagus_cuniculus", "Microtus_oregoni"],
    Laurasiatheria=["Talpa_occidentalis", "Mirounga_leonina"],
)

# Set tree line color & label color
ColorCycler.set_cmap("tab10")
group_name2color = {name: ColorCycler() for name in group_name2species_list.keys()}
for group_name, species_list in group_name2species_list.items():
    color = group_name2color[group_name]
    tv.set_node_line_props(species_list, color=color, apply_label_color=True)

# Plot figure & set legend on center
fig = circos.plotfig()
_ = circos.ax.legend(
    handles=[Line2D([], [], label=n, color=c) for n, c in group_name2color.items()],
    labelcolor=group_name2color.values(),
    fontsize=6,
    loc="center",
    bbox_to_anchor=(0.5, 0.5),
)
fig.savefig("example04.png")

example04.png

5. Radar Chart

from pycirclize import Circos
import pandas as pd

# Create RPG jobs parameter dataframe (3 jobs, 7 parameters)
df = pd.DataFrame(
    data=[
        [80, 80, 80, 80, 80, 80, 80],
        [90, 20, 95, 95, 30, 30, 80],
        [60, 90, 20, 20, 100, 90, 50],
    ],
    index=["Hero", "Warrior", "Wizard"],
    columns=["HP", "MP", "ATK", "DEF", "SP.ATK", "SP.DEF", "SPD"],
)

# Initialize Circos instance for radar chart plot
circos = Circos.radar_chart(
    df,
    vmax=100,
    marker_size=6,
    grid_interval_ratio=0.2,
)

# Plot figure & set legend on upper right
fig = circos.plotfig()
_ = circos.ax.legend(loc="upper right", fontsize=10)
fig.savefig("example05.png")

example05.png

Not Implemented Features

List of features implemented in other Circos plotting tools but not yet implemented in pyCirclize. I may implement them when I feel like it.

  • Plot histogram
  • Plot boxplot
  • Plot violin
  • Plot curved text
  • Adjust overlap label position

Star History

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycirclize-1.7.0.tar.gz (17.8 MB view details)

Uploaded Source

Built Distribution

pycirclize-1.7.0-py3-none-any.whl (73.7 kB view details)

Uploaded Python 3

File details

Details for the file pycirclize-1.7.0.tar.gz.

File metadata

  • Download URL: pycirclize-1.7.0.tar.gz
  • Upload date:
  • Size: 17.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for pycirclize-1.7.0.tar.gz
Algorithm Hash digest
SHA256 a93e5733ead40162434f2721345016d439f6c87ecb1a6ae86ab306374919191e
MD5 8e6d247a3d9e6d4fed25c97f299ac263
BLAKE2b-256 a829eb9ba62d88331f34de25b458ac92d15b3997f64929c5e57bb9b9a2a54621

See more details on using hashes here.

File details

Details for the file pycirclize-1.7.0-py3-none-any.whl.

File metadata

  • Download URL: pycirclize-1.7.0-py3-none-any.whl
  • Upload date:
  • Size: 73.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for pycirclize-1.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d3fda3962dba6b8f759f385490dcc400e8ea52b8c0e0cfaf262de6525097590d
MD5 fb9716f687979eb2c4250da7e4ef81d4
BLAKE2b-256 ec8d8d0dedce291aef829f383c1d66e2360637e4bfc448a7218b91831d1f6d80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page