Skip to main content

Design of experiments for Python

Project description

pyDOE2: An experimental design package for python

pyDOE2 is a fork of the pyDOE package that is designed to help the scientist, engineer, statistician, etc., to construct appropriate experimental designs.

This fork came to life to solve bugs and issues that remained unsolved in the original package.

Capabilities

The package currently includes functions for creating designs for any number of factors:

  • Factorial Designs
    • General Full-Factorial (fullfact)
    • 2-level Full-Factorial (ff2n)
    • 2-level Fractional Factorial (fracfact)
    • Plackett-Burman (pbdesign)
    • Generalized Subset Designs (gsd)
  • Response-Surface Designs
    • Box-Behnken (bbdesign)
    • Central-Composite (ccdesign)
  • Randomized Designs
    • Latin-Hypercube (lhs)

See the original pyDOE homepage for details on usage and other notes.

What's new?

Generalized Subset Designs

In pyDOE2 version 1.1 the Generalized Subset Design (GSD) is introduced. GSD is a generalization of traditional fractional factorial designs to problems where factors can have more than two levels.

In many application problems factors can have categorical or quantitative factors on more than two levels. Previous reduced designs have not been able to deal with such types of problems. Full multi-level factorial designs can handle such problems but are however not economical regarding the number of experiments.

The GSD provide balanced designs in multi-level experiments with the number of experiments reduced by a user-specified reduction factor. Complementary reduced designs are also provided analogous to fold-over in traditional fractional factorial designs.

GSD is available in pyDOE2 as:

import pyDOE2

levels = [2, 3, 4]  # Three factors with 2, 3 or 4 levels respectively.
reduction = 3       # Reduce the number of experiment to approximately a third.

pyDOE2.gsd(levels, reduction)

Requirements

  • NumPy
  • SciPy

Installation and download

Through pip:

pip install pyDOE2

Credits

pyDOE original code was originally converted from code by the following individuals for use with Scilab:

  • Copyright (C) 2012 - 2013 - Michael Baudin

  • Copyright (C) 2012 - Maria Christopoulou

  • Copyright (C) 2010 - 2011 - INRIA - Michael Baudin

  • Copyright (C) 2009 - Yann Collette

  • Copyright (C) 2009 - CEA - Jean-Marc Martinez

  • Website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros

pyDOE was converted to Python by the following individual:

  • Copyright (c) 2014, Abraham D. Lee

The following individuals forked and works on pyDOE2:

  • Copyright (C) 2018 - Rickard Sjögren and Daniel Svensson

License

This package is provided under two licenses:

  1. The BSD License (3-clause)
  2. Any other that the author approves (just ask!)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyDOE2-1.2.1.tar.gz (19.3 kB view details)

Uploaded Source

File details

Details for the file pyDOE2-1.2.1.tar.gz.

File metadata

  • Download URL: pyDOE2-1.2.1.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for pyDOE2-1.2.1.tar.gz
Algorithm Hash digest
SHA256 2b267b54f5485718a008c12c2901114ba23834708545c75d42f1c8f0f0ad20e4
MD5 d02e8f34614cb2ac305b3e5006f5af0b
BLAKE2b-256 8c09ddb2b0ddde727051d281ed9a595be55b36514abde5ede768d4d2ca14aa9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page