Skip to main content

A pure-python implementation of Datalog, a truly declarative language derived from Prolog.

Project description

Warning

This package is not maintained. Use at your own risk. Consider using IDP-Z3 instead.

Description

pyDatalog adds the logic programming paradigm to Python's toolbox, in a pythonic way. You can now run logic queries on databases or Python objects, and use logic clauses to define python classes. In particular, pyDatalog can be used as a query language:

  • it can perform multi-database queries (from memory datastore, 11 relational databases, and noSQL database with appropriate connectors)
  • it is more expressive than SQL, with a cleaner syntax;
  • it facilitates re-use of SQL code snippet (e.g. for frequent joins or formula);

Datalog = SQL + recursivity

Datalog is a truly declarative language derived from Prolog, with strong academic foundations. It complements Python very well for:

  • managing complex sets of related information (e.g. in data integration or the semantic web).
  • simulating intelligent behavior (e.g. in games),
  • performing recursive algorithms (e.g. in network protocol, code and graph analysis, parsing)
  • solving discrete constraint problems.

As simple as Excel

Datalog excels at accelerated development: Datalog programs are often shorter than their Python equivalent, and Datalog statements can be specified in any order, as simply as formula in a spreadsheet.

More info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyDatalog-0.17.4.tar.gz (325.5 kB view details)

Uploaded Source

Built Distributions

pyDatalog-0.17.4-cp310-cp310-win_amd64.whl (272.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyDatalog-0.17.4-cp310-cp310-win32.whl (250.1 kB view details)

Uploaded CPython 3.10 Windows x86

pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyDatalog-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyDatalog-0.17.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyDatalog-0.17.4-cp39-cp39-win_amd64.whl (277.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyDatalog-0.17.4-cp39-cp39-win32.whl (255.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyDatalog-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyDatalog-0.17.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyDatalog-0.17.4-cp39-cp39-macosx_10_9_x86_64.whl (396.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyDatalog-0.17.4-cp38-cp38-win_amd64.whl (280.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyDatalog-0.17.4-cp38-cp38-win32.whl (257.5 kB view details)

Uploaded CPython 3.8 Windows x86

pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_i686.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyDatalog-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyDatalog-0.17.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyDatalog-0.17.4-cp38-cp38-macosx_10_9_x86_64.whl (396.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyDatalog-0.17.4-cp37-cp37m-win_amd64.whl (268.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyDatalog-0.17.4-cp37-cp37m-win32.whl (247.6 kB view details)

Uploaded CPython 3.7m Windows x86

pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyDatalog-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyDatalog-0.17.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyDatalog-0.17.4-cp37-cp37m-macosx_10_9_x86_64.whl (387.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyDatalog-0.17.4-cp36-cp36m-win_amd64.whl (281.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyDatalog-0.17.4-cp36-cp36m-win32.whl (256.7 kB view details)

Uploaded CPython 3.6m Windows x86

pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyDatalog-0.17.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyDatalog-0.17.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyDatalog-0.17.4-cp36-cp36m-macosx_10_9_x86_64.whl (386.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyDatalog-0.17.4.tar.gz.

File metadata

  • Download URL: pyDatalog-0.17.4.tar.gz
  • Upload date:
  • Size: 325.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4.tar.gz
Algorithm Hash digest
SHA256 1db6739b0a204c36d163c4ec37bb816e0ff2d276e12c9aff0b34ee9f102eac79
MD5 e062943e24e7cf249275c8283181e36b
BLAKE2b-256 ac81177499a23ca0802f9cca7af4df7c2ea74e91e0526c9e411204a58e4f01f9

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dd235a78fe05dcdf21e3323abf0370ef934cfb46e4f8bb459ff21d301c583c3b
MD5 896442c7fa644102f569e6d67a191acf
BLAKE2b-256 fb22ce7b613734f8f029157c6251ea72c6340e25eef238fbfb1a3ed01dfcd354

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyDatalog-0.17.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 250.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 25bd15c812782055e971deebecc179e3cfddf0e84a6fe1014338c56a5a396a70
MD5 e74d91f7cecc36d04960e1407a59802c
BLAKE2b-256 2d43a422f20cc31535ba6b4db498ff56718069599f184f4c4b192794d0549c2d

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be5e428d3ca3b3f8ea348906288d97327bda4f3bd6e65d145ba7d8371592ab50
MD5 c33402720b3f13fb9f780dcf0aa60c8b
BLAKE2b-256 4fd73846e4e92d02243d84a9d8c295864b88087707a3b5d7399cbc061d381875

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 91364894292c771ece2eae6d54af34264b81fe67c8f03d8f0974d416e7ee0f55
MD5 df12a417013c61ab703c6ab579c6f858
BLAKE2b-256 6afdbc03647ce1dc25beaf80606391a7b067d7ad4737d0bb6ee7146647981115

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e18c34712a9d3bd660a33c294e3c4da987e08cc8f6cfea8f1905735723d589c
MD5 f9bd2efd27b9391487da524be1c5a0fd
BLAKE2b-256 a81595498f9a5e1455438e2927841b0829769136ab266747daad2da70b032516

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 155359d13ea8503b3479e578aee871f0a93ffee806c3e34b73ce07649e7c96a1
MD5 b7ef1d4c8aebffeeb8542c2b80702669
BLAKE2b-256 b193eb732055bbe8e319b00c77eb71c4051fe58b3057219d4dbd9f4a0f44e371

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b1dc3fb25adc672c2cca9d3d35d52948ad5d54b1f789fa6a68caed8bcdbf4bc5
MD5 7291e2667f7c808bfe3096608bed7a73
BLAKE2b-256 ea8287960240f16d4f68587cfd20b0d308a53473990e1db06ec9b9fdcf71a077

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyDatalog-0.17.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 255.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 87a61672e72ae22ba96643c142d702d8f7cc5f3ad75af6a8351cbb464d69e539
MD5 bf8b4c278f9eaf9296ace6b1ba64f8cd
BLAKE2b-256 36a1aa1c8d6f1df278b57e77e7b74b2b6f2e1d30d9365a28b1b1c61d4bf6fb48

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed2754939402b78e70906d8659a4329f57548851822dfaa1929b280c7ec1df53
MD5 1a0d7fa7e3fa77306ea74dcd8083bf2d
BLAKE2b-256 4fa58030e37222c9100925e94a86a6df9d56800779ac07314a727b9be729e1cf

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f9df08b5ba16b1c67206a6763f3dbae365f30a0b1d6a1033b9d41c584d48de84
MD5 3e932e50681850e187721f0fc23d8821
BLAKE2b-256 3eee859f6ee9cc2dbbfd6f7d81dc49203d8199f7f97c1c34b4d1f5d8d58b5e23

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 714d42c2bbcbb39a6b86adf3f9e137f43451d0c714dcd1e0f9363c4ebd761da3
MD5 962f6a4c1a45f62895d8609718a03fd6
BLAKE2b-256 5ad82b48ef8f6c1cdf1f06a3f3087f5c2bc6474add063e9400cd8483de0a31c8

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 750e1cf2f21d0c90207e6b6be865ee9d689e587bb55050f84cccb7d20be3ef5c
MD5 988595a9c526cdf0ae35a8f24afe3f7e
BLAKE2b-256 f62eeda0ac98b078ec387bd5f201a80214235b98efd3446b1c217c04e2af3c8e

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fd9c9326c5eeadb3588f6f0f6401176207333996d79c0f199258003fd367f98
MD5 96f8ad1af121785fbb3be59eca7f0a60
BLAKE2b-256 99b7d83df87c8dec05c94aea51588b4611b08bb208c21b9a7f1fbbb0b9a44cd6

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7b96a713ed154d59baf267ad195a9189ed91665593b1047021309d5e56dbf0c9
MD5 1ceca08bc05f2c48f7bef1b48ce04422
BLAKE2b-256 6bff26b3f0a6933f3a6ec8471d22e8a3c06ce5872999f59747c5e9721cb50de8

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyDatalog-0.17.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 257.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7028dadfc3f0dbfddddc83b46c159cab1c715677baf1a85f636cc4318535d567
MD5 aecff236727436c7b4c7fbd5615869eb
BLAKE2b-256 eac0adc699515d54b0998eb34bbe79820b14a006a532ef1be3e8779ee056c2b9

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e0238df06620636ea8e8adf17900363e1d3f6ab585aac1e1d0dbff7a7ca63c7a
MD5 6d47e76505007897883a6b372837f0a3
BLAKE2b-256 753ce3ce4a8e61faaa153898a6c5fdaae4a6e35be017087da3ccf04e4cadbb63

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7d5f6a7dbd610f4b1d0d0d82f3ccfae0908d107b16373122a402273d5b0e3cb2
MD5 27f8ff9c8d3d406c8d2a28f980fa0a85
BLAKE2b-256 e63be2cfe8f4f8573de4e34e163f44730b52d1169a57f450f1c6151db746e678

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 271af2a7a1fd89309464173e480dde78ea040f9ac54b0e981e96c8383c9a64fc
MD5 8a7e5877dd7b685c12bf1a33df32a11a
BLAKE2b-256 979dff4dcbe58585e7af4569313c9aa814b565480bb8368ebf1efae52a5b1fce

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 491010c04e720052678d2c03ad3ab93fbaf161f2ac4bed43b028d962db0b0f74
MD5 f2f0e268f38e406c75f54df9d7fcb9b1
BLAKE2b-256 f51bb9028ae2e8b87a9b585c9b336464e9b996272943ca5e6a49fa79ed16df4a

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9091965e524742eed506c874e9ab092f877f4c34f2d2fe3c3d06a117cc329eb3
MD5 604191db8a756d1122391cf9be44cc64
BLAKE2b-256 f33b519b7eedcddeb2d56f73ea1bba16696f3190218dd96029cdf3295453c344

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0871586c8849660745be2c9f1bc5305d48801a550d9abc63b760d8e99f1a366a
MD5 8bafde18f55af99a17ca05678e51cd8b
BLAKE2b-256 888bdfa76991ed8c66aa3b9333e7dd3e3c0b4654f22a7ab9c0827e0664610c1c

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyDatalog-0.17.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 247.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b9ce5c835d406015fd38ee5b6ef50e8dec7a9e38b523439f13ca1576fb18cd7d
MD5 fbdbbc7442da9eb362b0ef17fed199d7
BLAKE2b-256 ccd2c05ee2b3b6daf02af3757db223d9d7f47226ab7ca2701b74756706a603a6

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4baa87cc34d83364fd308e9779a5f94d65d127b6e5c120703dccc23a79b1fb92
MD5 22b450559731f58b9db5493f66ea1c07
BLAKE2b-256 cef206ef18bb1c7beee78279244de49ec9f3ce04630f20aed99a1f8607b315f2

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b1d37ed25ff2ba92e30bc3ca41bf791763d8e07cf9fc0a2b7b2e8bc06490049f
MD5 16d53cb238bbe30b7325e607bfbe6c00
BLAKE2b-256 e70c0461ecb41ddd9547a75b8f57b4e1117ca2f148edbd3b0321fd12095b7f69

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a67753a869bcf427de6844c53f8db9074bc0f66f22bf56aaf591eef538fb809a
MD5 cfb548d77e03449a7b2b34e1a33cf6b7
BLAKE2b-256 3f1385a090b2861a8c2f63bcd4544c9b51ab76511b8bd7c80251ad1293594d56

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec1ff5f266f00cf341ea186d88d3b1c34430da69ab0ffee72bf3916b2111dd66
MD5 961051bbb9952d3cc0782e0ae2b6a5c2
BLAKE2b-256 a8c8f3be9bbda7413bd2a99f0bc90b6cfee8bf35e552434787520b94af841d1c

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cc1768e8b549dd4ae16e5c0f4aa88587e2e36eb68c57b2a2eadfb70f897f350
MD5 c697b233012f446d98db9429e5e8b3b8
BLAKE2b-256 a9b76ef1052c36f1431b405d9f6e91eb81fbf23de32bdec147f44701e7a89bcb

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a41d7d3ff6518999ea502ed3add113fbd6d986ad7008f5d23fefb8440511d389
MD5 109936db3841d872856a493e33bfc00d
BLAKE2b-256 b3e963de864c6f5a1643e014d439394baf05e6fa792371ae209de2e1bcbc7b7e

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyDatalog-0.17.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 256.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b9eeadba9cd75cbe09d274c498c0aebf5dab7f3a0ea528d1b9d323f01432a220
MD5 b10b7ae9b11d97bcdb8e0d0469561af9
BLAKE2b-256 c8a7aab182e0c3883fde77d20bd01216511bb686265d8cc55415861439a64259

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 04ef682d597e74e1b47fa26b6a268d54dcf2c112c64a239451a38ea8d789ef4d
MD5 9d6034bd453b07747074167d725f1e95
BLAKE2b-256 7157cab818d4eafb7c4167a5222432773dd0558d59b66ea65b969d9fd5c8dda8

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dc04ad4c93bcc84198d7734e5dbe4b7450c26ebdc58fd20e5e5e4317d5e9f82d
MD5 a70eba0878993dbf9f81118db2b4e73f
BLAKE2b-256 3dbf771e39139bdfead1bfbb3cf3c938331f74c69ae38a1c1c9ffb14988f361d

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2953713c8ba366cd5b6209bde1206b53d29e6aa9788462f5e0da33a2042b62d4
MD5 7fdf942c9cf05ecf2d430b62d76008b8
BLAKE2b-256 eb7332b231270855e02220903ff671ca7a71cfacc91d4f22cb1cf7ffcee34092

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2bd6b9acce7fc652c3a65f3ac9ae913579160a3250c4dc27c1fbefa1ae8ecef4
MD5 e868164240424cb49f2adb86353c1d1a
BLAKE2b-256 567d154a5b6c4aaba22bd01543c9831170b4dbc955cdb80890078cb020726f56

See more details on using hashes here.

File details

Details for the file pyDatalog-0.17.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyDatalog-0.17.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1f12d12df08210473d3e467c9fbe9e540228525e28246ee20df41069873fa5b
MD5 f84ff164fc4a7448db55e03f0ed4a64e
BLAKE2b-256 e4eaf9481acdb1b25751167abdc4e795bdcf90ae38ce90382ca14d07e729626f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page