Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. The company BioSemi introduced a version which saves all data with 24 Bit.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at https://pyedflib.readthedocs.io.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

Citation

If you use our software as part of a scientific publication, please cite us. Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.14957195.svg
Holger Nahrstaedt, Simon Kern, Dimitri Papadopoulos Orfanos, Raphael Vallat, Clemens Brunner, Luca Cerina, Stefan Appelhoff, David T.H. Kao, Craig Franklin, Florian Hofer, bitterisland07, myd7349, Marijn van Vliet, Jukka Zitting, Guillaume Cathelain, David Ojeda, Chadwick Boulay, Blake, Ben Beasley, … Jacob Svensson. (2025). holgern/pyedflib: v0.1.40 (v0.1.40). Zenodo. https://doi.org/10.5281/zenodo.14957195

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyedflib-0.1.42.tar.gz (2.3 MB view details)

Uploaded Source

Built Distributions

pyedflib-0.1.42-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12Windows x86-64

pyedflib-0.1.42-cp312-cp312-win32.whl (2.3 MB view details)

Uploaded CPython 3.12Windows x86

pyedflib-0.1.42-cp312-cp312-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pyedflib-0.1.42-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyedflib-0.1.42-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp312-cp312-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyedflib-0.1.42-cp312-cp312-macosx_10_13_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pyedflib-0.1.42-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11Windows x86-64

pyedflib-0.1.42-cp311-cp311-win32.whl (2.3 MB view details)

Uploaded CPython 3.11Windows x86

pyedflib-0.1.42-cp311-cp311-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pyedflib-0.1.42-cp311-cp311-musllinux_1_2_i686.whl (2.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

pyedflib-0.1.42-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyedflib-0.1.42-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyedflib-0.1.42-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyedflib-0.1.42-cp311-cp311-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pyedflib-0.1.42-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10Windows x86-64

pyedflib-0.1.42-cp310-cp310-win32.whl (2.3 MB view details)

Uploaded CPython 3.10Windows x86

pyedflib-0.1.42-cp310-cp310-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pyedflib-0.1.42-cp310-cp310-musllinux_1_2_i686.whl (2.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

pyedflib-0.1.42-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyedflib-0.1.42-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyedflib-0.1.42-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyedflib-0.1.42-cp310-cp310-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pyedflib-0.1.42-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86-64

pyedflib-0.1.42-cp39-cp39-win32.whl (2.3 MB view details)

Uploaded CPython 3.9Windows x86

pyedflib-0.1.42-cp39-cp39-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pyedflib-0.1.42-cp39-cp39-musllinux_1_2_i686.whl (2.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

pyedflib-0.1.42-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyedflib-0.1.42-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyedflib-0.1.42-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pyedflib-0.1.42-cp39-cp39-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pyedflib-0.1.42-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86-64

pyedflib-0.1.42-cp38-cp38-win32.whl (2.3 MB view details)

Uploaded CPython 3.8Windows x86

pyedflib-0.1.42-cp38-cp38-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pyedflib-0.1.42-cp38-cp38-musllinux_1_2_i686.whl (2.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ i686

pyedflib-0.1.42-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pyedflib-0.1.42-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyedflib-0.1.42-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

pyedflib-0.1.42-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

pyedflib-0.1.42-cp38-cp38-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pyEDFlib-0.1.42-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

pyEDFlib-0.1.42-cp37-cp37m-win32.whl (2.3 MB view details)

Uploaded CPython 3.7mWindows x86

pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ x86-64

pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_i686.whl (2.8 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ i686

pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyEDFlib-0.1.42-cp37-cp37m-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

pyEDFlib-0.1.42-cp36-cp36m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

pyEDFlib-0.1.42-cp36-cp36m-win32.whl (2.3 MB view details)

Uploaded CPython 3.6mWindows x86

pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.2+ x86-64

pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_i686.whl (2.7 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.2+ i686

pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

pyEDFlib-0.1.42-cp36-cp36m-macosx_10_9_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file pyedflib-0.1.42.tar.gz.

File metadata

  • Download URL: pyedflib-0.1.42.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42.tar.gz
Algorithm Hash digest
SHA256 39f35c60ce213f23ee954f89117f79b2adb5ef4894500fd9bf0f9298fb240efc
MD5 db8ba0330a92d30368613663b6e3ec0d
BLAKE2b-256 8b295080bc311a9f0f3802fb2919f3a7ff790f1ddbf352b21c282a479b895e10

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4a00c11bcd4ca65c298fd5934cad5e4660a7e9493a6d0d0089536b6174b71b0b
MD5 3c0cd3cbe646cfaf451d201f21c9274f
BLAKE2b-256 bd71432dc85d346d0a168ef75e56b8a60043f64cdf60a75856559ce888c00e51

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7d691e76ff2fb46c6ccabedf6dd2844278469d0b656cf290f4566839229634e7
MD5 760d6e7b4fdf2cb27fd034b7c29665e1
BLAKE2b-256 9bc8b3b1bcfb6efe191d2e0f7cddd5bcb647c5539b79ead66dbf11f594c26c69

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b06595aa21fe909109c6acaf0b27e254f4ed8c537ff0a69f1f4153a6e9fbeeff
MD5 862a42472a625ed82d5161df2efb6be4
BLAKE2b-256 75cfa4bd2179655a5f0e0283c6d355e9dd9a851d3ca141ad321b9eabb4194952

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 80bc2725c01aa1c1d396fc86c936f31b54ad305deff688e6604f4f3ae5d90905
MD5 9e8136b6602b94c79a5ddde7db0da702
BLAKE2b-256 860b2ab04d3d6790445547ed435f5e3674dc8eaf7730e6dba87e8ca7f8ac30de

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9e7f877cf90882166e035cfa03a1c9c8dfb6e3a396abea94f592973455b0581
MD5 8ab6dbaeb76b679c97d6c321bcafa96e
BLAKE2b-256 ad376970d38c7ba23f355505aa5e6cd73903ce327d0f2d20313c7c426ea2f779

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b8284c0607660ed1227efcff54837ef077284957a138075edcdf78afc24fb8cb
MD5 8e5db703549a257dba25f8b9fa86747a
BLAKE2b-256 42773793a769b266ff4d01fe4c85ee7e8fcc27e9cc0c000f2f5b1836ea865047

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 539f8b35717070f0fcefcee5de3475daf717762f539bab61c1804f11fa258a98
MD5 1de11008c49563b76632715a129a4ed9
BLAKE2b-256 4ab7a8740dbdb9c6949e4531956cc2e222cbab4a5f49ee7048ecef6a80c2ae24

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4e9c52bac8c12d8981a288c203e48929ce8ae8b54ac0a0839060499a25f61073
MD5 68c13cc5d842b9dafe6eb26e99616b1f
BLAKE2b-256 3f0df846c6f2b1ec383166b500af354ac4a282c416fa1d6279bc9e1b80ff3366

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1d21e7e4af0c93a0e18a200d89a6e96d5bc99804ac7993286ccb821054a5641e
MD5 ce393929bce6d9404731c749a25e5d76
BLAKE2b-256 d3210bb26247f05c939fe26d112f55e7b0f9c3fb2b1e0dfcd95e6012f9f3b7b2

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 50ef1d51759baee8dcf8e886abadecea23594fc4d76a397998e33a0b046857af
MD5 b6cb65f6814ba963a1749b99e9954e0d
BLAKE2b-256 4229451b8af95458fbeac449ac25efa91db168fc48599e10c4bd951147a09355

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e2cf53cee3a84428c98fd0f35ac52b2a2dc5e08e05c3ca345a70165892ed98d
MD5 5936d376821551c74812295da8f6211f
BLAKE2b-256 0047e17e763e94acef5ff53260f5167408dfbd53f1116b3dde737f04b69b681c

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b59bdd6c3c009af9f06026e4533dbefb7a9900c3377e4a9bee1e9fec9dec376d
MD5 6e2047fbbef7c8befa6dc1cdfb77098e
BLAKE2b-256 a3017b5fd465c939cbea3c2c3e7faa48aace914efa2ff93471f3665ac6c211ff

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2c27139608631319101936c16b408a1c0cd2c53c96a9ae0899f8374673d1c75
MD5 c239c0bed1699ae9d4b8294cc53d260e
BLAKE2b-256 f0fc336258bb410870ffe36f00b6854ff7fb77ea2d36c34e3dc9f9c214bfc9a6

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86b182d1e748a42e3169cdb67e3bc4b4f9585d3e6abf4a531f14815d312919cb
MD5 f9b34503a3bf49a88f2811b5ce90ea8b
BLAKE2b-256 e6ff5d10917002af4c811012fcd8534d1f08eb30eabf1402e35692a745d5e793

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bb58686ecb9a175a71fb893910985677cf0e83cf622d032db406cc23e44172ed
MD5 5b897d116c1d51de4fbbbd9973490301
BLAKE2b-256 e7ac64e151ceb1a4ee3437ab212f18ce41905811ce21b556609f2a37d1830c51

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46778b28e163d7e318651a7883ba35bf1f3898d6e774dd2a22874959e0c9b760
MD5 26eebd729bb2ac07762140df3d53a955
BLAKE2b-256 14135b03e466964ce1260563c1cf0407014f0f7ec8574f1b76e3734c07bb9cb4

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1cbe156c87e4952b21f12dedb8dc7c2e3a68330bbf526f6560c3eaa4458d480
MD5 e4a442095772af48dae7c86514b5402d
BLAKE2b-256 b77c7f3697b6d9c2799e3455f576834e22c4b1e6b41d50ef74569f22cf9b909f

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3467afe4683e87e1619626ae2d001b977056f867cef7669eb0399097c1017ced
MD5 d6728cd3a323995d5677be13296f5946
BLAKE2b-256 30e239ab13ca9334390427bf5d74645e9f8e75602efd161d46c3c3118f8e51f6

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 928d6d68deaaeb20df291bdd5f0489a648f7ec1bebeb43e05f713d860fe6ea96
MD5 97112b363c49eb9e10e459033ce0f8a4
BLAKE2b-256 ce76e9793830817e7ea13d94128cd3befbe34fc6ae751a625268af75ec5d48a1

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cfc439fc986fa18f4b24f3e9d196d3c06616d90adc18d82dfde7969827b349a4
MD5 3bb864ca495d983bfe94323d07a2d001
BLAKE2b-256 f92bfab5b33deb7eb7af671153547bf092f2ae2f57ac864ba7d7db556421de3f

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 15a920e9544703011c67173c655c08d4632eb2d09f12438f7958bd574e37ef4f
MD5 9d03704008b73fd9d769295401168ff6
BLAKE2b-256 548eb67779edb3f750af82122137a8cd1b8e649ad1b16d078c38cfa7f139b0d1

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fa086362bebf0fdf1f6987a4f935e22cd49afad8c1fd42b810652e6120467e6
MD5 f8c0d60a6bc5425f915153a3ab2c0bcc
BLAKE2b-256 952103b01c5316db827c025defaa43b7d846ef5c1b31700f762fdbedc69be5a5

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b839a06b75ea04a7a99345cf0ed61849c84d03b5dbd7108af5167229d770e356
MD5 d43fc46b77a5a253a1cee47638a4967c
BLAKE2b-256 982049758d0768e894cf4aa21486a742ac79c3c409daab74ffb1e6ff95bc2da2

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9f010ae011471c61f64b5821e45ac930b18e637e03c3809ec9aaf7fecc63d5cb
MD5 d8f28a6d71eab1ab2daaef5d05235954
BLAKE2b-256 d58892139981c78615a1251bac2109d17d0e7af676eda86a1e4884ff884c2683

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b154d682e7d1dc96ef0b670781871ba18183c5b741d30f8c4cf54072f206b007
MD5 30fe60f176ed6fc0e3b00b29db46b4f5
BLAKE2b-256 c4a6257e2bd0b8941dc9b9483502323899092ce7b0b01bea35047282a3856c8a

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf7ee08a47a7648e18c666bc766a930335364c6501d2aad3cfd9420ea0cb7e54
MD5 cf933bd6ea8bd56b097b031e3b7c17b3
BLAKE2b-256 b36be9258512a7d4706a2779efeb793a657622dae26f226c045eaefde66d0d4f

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6de7a7b337d7ad81553a83fb10a866559b7ef3f80ecb44aa64b59af5c061767b
MD5 78ef29b63a33076cd3cc6d32651b381f
BLAKE2b-256 36f1051436f146d785639a882b222f20f0a543b7fd0f3cb1cbfb81a55a9ea72d

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8f55edb3392b2b412d9bdd17e1cb899818b54e58f039ec0cf9e2650ed4ef3173
MD5 b28964621b89d96bb1cea0f0b042f47c
BLAKE2b-256 dfcda47cf1031095b9d3ffd2fc8231184b90eeced8e44027784c0e24b9f09f24

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d1bf1e95ac53b824f07f71ba744da650d537df89e1d9a234bead2bc5949836aa
MD5 48146e9482d3ed8c7e6c7734ef70dcd0
BLAKE2b-256 265cf34b42bab06418bf485ed4a8596905c8e83ecc917ecc071531cd329f2562

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9d208ba5b6276ad109302037c390e57dd4d9297dba3dfc36dc72fb540ec8309d
MD5 1834112116e822ae8c66f4d0e1bedd1a
BLAKE2b-256 0d8c2c015618dc67279c7d9d733fcf2d8cf8cf1a7c9ca65ca1c14b2eaf440cf6

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc2b14ff288b6085d43645a072405b7b508a33927f80e15ba55608a577de4939
MD5 ab9089e5e26dd98396b5f023ca48e94c
BLAKE2b-256 522d85dd4dfa70f32dc3d36f0683086b43a8063ea858527276f36bbdf1769c69

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 422b0803ec189f3d5070363a24f00b85eaa6e6cfb1281839acc46d50f35a0e44
MD5 204db0eec850c9c7ee151d3fb056d93b
BLAKE2b-256 e39e1df486070544b16c65fead7f16dc2a164403f284557263dea8cf7b888d40

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f9ad126fae8c5d49fa69f3ad876c1fe0a0ffa414ff9734b70712a1db480a9ceb
MD5 fe35696c8ef5bf564f2c8f40a21a327b
BLAKE2b-256 fd2f9348db2c4adb5062aef9628ccb6a88579082821ca7dbd6710e30ce567910

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d7e644a795fa48a98cdbe6a108eb0320d998f895dd8b742cec53cd8daae1e04
MD5 45af7f6d00f3a2b85b68bb50760e8bdb
BLAKE2b-256 345b3a5cb6b59e3e43b7ab01ca20c0dcbcd8540355e55ef73dcd6123177c8da1

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3130c9f7acf4d7cacd548756518bd991d139ab2d74b05444a9e1dc81c1ac920
MD5 0ba1c6e7223c843ff7b242ae2b6b4d00
BLAKE2b-256 c76f916c987c3f0fea66eef8a52162b5480bd717849a7051beafc23544fa65dd

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 187c8e439100b05fc72c563f632521b67cb5d0d926eda326c90fb6813d09de67
MD5 7e49f375b0a67a42f8759a68b6a5906d
BLAKE2b-256 f3f4f1152fadd73cbab792dce60f2b1fe7216b61b614c8ce38b2322380b53345

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyedflib-0.1.42-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 edd93d49052d5014b599e0900573cd6013420a5a1d47ca6ecc94545413b0e28e
MD5 195cf7a3def773bb4f1607ca4b11905b
BLAKE2b-256 d1c895eef15dd8d9baf43a65bee97707aac90365b503c2c37ec20702438192c5

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 12644e481245dcf57997e77c53b086f7d3118b6956021a7f140f9d92f01c451a
MD5 e9e8e5ee67e71ac4cbff857951ba85fd
BLAKE2b-256 438583e175b78e641fc7b1903e4acb28f7c4a27c27e9c8d36f0bfc06ec2bbb73

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6f1b2ebdd7105f0b994d0d8f05e074c61cdc73f42ae7482ec3be953840b9ab70
MD5 a964a08d22dc4d137f4709b17300ac57
BLAKE2b-256 aed796ae4db22b1a83aceece4e6075dd954a7a363f0080a5e04fb9f5d0b40930

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2092ba5d94f6b436b491f978e025b55355c51a4a28c30ba4dda689e4cd77558
MD5 ad5f80e2be710d19540c279ab9755fa9
BLAKE2b-256 20f095185d502f56bd6e95385e5ba1493b226f89233941a9c80dfe9940c634ae

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e071dc297ad6b35f30d8787cd54c2510c7beddf97f052ae6a72f14febcb3bb04
MD5 fd706fdc1659d8b6ec4d8e96516525db
BLAKE2b-256 936dfe5bf36e01b7fdb0cb6d18c721189a165b8b5fd05a3cb4e2e936739d4aa3

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6b27923e8edb522e70bf5ea21ba49a565dddb3cfef1395ee63f743557da7aed0
MD5 92eb1d1405a4f168833d9df4f3746d55
BLAKE2b-256 e8a2453e8fc357e008ba15f8fd1a3f6a9abe844d22208584f5a5fc125700487a

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0482aa8896f45069bd77899b2af2a4ca3f28b20a962f722ba266b33bcf15ca97
MD5 2099ed7ef8af6a4ad174cb4c1e0fadcc
BLAKE2b-256 0e55fb0e3f546aa28a892091cdbe76db34b626080ae4baa8413a6baf5ba8a526

See more details on using hashes here.

File details

Details for the file pyedflib-0.1.42-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyedflib-0.1.42-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 132c2ae74393719e965837512994d080e5814c42e437b76714f9d03628c609ca
MD5 c252ecb279913ade32679ede1c30ba20
BLAKE2b-256 4a5b78fe0827af11ba74cfaad329ba104a94fa81c743d545eccd89ed07ee3778

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.42-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6f59db395a66111fff0eadd2cef59d88a7106a6de6c211d3e47ff251dcc7359b
MD5 e55efe58417881d6bb3f88796152aabc
BLAKE2b-256 c8a2e43c2f4ed8b1f118f08e43101e901efe299eb24e0adbdd588159d0e2b099

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.42-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 31130858b25c67923a9a52ca54a68452022cd505a324392b4a6ec03654437f1d
MD5 b59b17a7374d2223812896f09cf8a160
BLAKE2b-256 8bdcb1796fb360573963d93c56ce143ff7af2dd562562b448f8aa0fa6525bdcb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fccde2176e2a96090d47004b1330553673653d154e32ff8b063676be9b1e4f03
MD5 2ed3dafba18a360fc1a59c8d3160cae1
BLAKE2b-256 94cfd09df27ff583e43c6c119e8c80e68b17e695367d1d206cbc9fbb06cc2bc9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9b235e11cf22cdeba40229d00d0621f695f5640b23cbb557db72db0c808e7941
MD5 3dec8bb89ad94fd36274026497b89aa5
BLAKE2b-256 e259c3c853bb449228be03cc2af1c38324279f0985559f0c2e88023df728e5f9

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 636097090d61a76ca8011d9ad666159ee8e3fc5ed9d7cb114605ce1c80f40260
MD5 04a41e9905480df8039887d9786ca222
BLAKE2b-256 219ab9c84d549ff56b9421a905da2580340a1775dd789aa522850b770380d506

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b527544946887249054f1ca95de8b739bd9859beb683c3ff799ec56d5c1f80d
MD5 6ab7037d582e1cbe12b263991a0ac617
BLAKE2b-256 8ec94272d437c5648845e89f9cfe1350b1a7651a91074549adeced94117c6e35

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 205add9b4774f8d4f5ca2b6a24ab220d23533bfaa813beb02f6c85474aea1d7c
MD5 1a3e4039803d90dd7b8f0593c17a2d35
BLAKE2b-256 18588c8a890b55581465348dc29cdaa53c0de35fd715feadcf326b3a87ad12b4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.42-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a20e92873483a6ffb36f6f50fb66faadd41fd55375c62d548318cb3b90fb4c87
MD5 999097df0e7820ee60d9d2045642c60c
BLAKE2b-256 30fc853b01c99b0d62fa621506a02c550a301d7851f3fcf553060fc74a26ec23

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.42-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b85302180fb7e61f6115043165145d650a64429f266cb5724a844a8a65cfef2e
MD5 7e4f1d2b76de8b5e17ef91dc49899ba1
BLAKE2b-256 2b065dd5484f0e272ab5dc0e80577d23c3b5eb282a83752eebb04c669bc96c8e

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4643b9eb40895521d92d7f54120f3fd4597003575bbd37fcaa48a770cd19678c
MD5 6d54033445d7c90dec6afa4dbf5ae458
BLAKE2b-256 595e0675176a10a609bfa764feae190c3272a6f972fb2ae898ce7c4c14c77923

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e40e2e0a5187068eba5c845d8b7e88ab6fa8ef1f9266360228d41713606cfcda
MD5 731433bd7f88506b4a46e04968025dce
BLAKE2b-256 4215a26c82c51f2c88b5e2d9a288997f6653ff00f88d799e98a763d2d3c64a77

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e9215ecf0385f20a6dbf6754af987c9978297e06ff60d9743b6cbde0af3dbf7
MD5 32b2f899d47912e11b6b5b9985564200
BLAKE2b-256 185591e7dab6c7df495b72493b10da6bbceccc2b6d6e20c40e0639eaf9fe0a9b

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 abbbc52c3f17857ee0d01c88c55046af36238dfb8fbb3fb781bff28f19e6b5ef
MD5 8c3f51909020029a5f9046e926224415
BLAKE2b-256 2b033b374d2d57e5dc643276a0e30ee88f2a52079930dab17a3509cc52afb701

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.42-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.42-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df30cba9bb270156c66867370816f5771537206b6420b68ac4a20d346df47a4f
MD5 209c5ab82749455e3274c950706391e2
BLAKE2b-256 d8486e0d6c2e6669eb43c97d72abd9292f3bb0f812a06f48a839e18003c2890c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page