Skip to main content

Python implementation of fast azimuthal integration

Project description

PyFAI is an azimuthal integration library that tries to be fast (as fast as C and even more using OpenCL and GPU). It is based on histogramming of the 2theta/Q positions of each (center of) pixel weighted by the intensity of each pixel, but parallel version use a SparseMatrix-DenseVector multiplication. Neighboring output bins get also a contribution of pixels next to the border thanks to pixel splitting. Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer rings of a reference compound.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pyFAI_0.10.3.orig.tar.gz (49.9 MB view details)

Uploaded Source

pyFAI-0.10.3.tar.gz (6.6 MB view details)

Uploaded Source

Built Distributions

pyFAI-0.10.3.win-amd64-py2.7.msi (2.5 MB view details)

Uploaded Source

pyFAI-0.10.3.win32-py2.7.msi (2.2 MB view details)

Uploaded Source

pyFAI-0.10.3-cp27-none-win_amd64.whl (2.4 MB view details)

Uploaded CPython 2.7 Windows x86-64

pyFAI-0.10.3-cp27-none-win32.whl (2.1 MB view details)

Uploaded CPython 2.7 Windows x86

pyFAI-0.10.3-cp27-none-macosx_10_6_intel.whl (5.1 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel

File details

Details for the file pyFAI_0.10.3.orig.tar.gz.

File metadata

  • Download URL: pyFAI_0.10.3.orig.tar.gz
  • Upload date:
  • Size: 49.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyFAI_0.10.3.orig.tar.gz
Algorithm Hash digest
SHA256 d44891b3f34cf0ba69f01b24bad718346787d6d316e2f640030271e54b2c34a9
MD5 4b25521704303f2e8063b5f03ae018a5
BLAKE2b-256 f39b9e21d6fc03f61d72cf216bc426c48cc3cffab06108088960d2fb95498a24

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3.tar.gz.

File metadata

  • Download URL: pyFAI-0.10.3.tar.gz
  • Upload date:
  • Size: 6.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyFAI-0.10.3.tar.gz
Algorithm Hash digest
SHA256 19f8f67874215c20bd89e0cd4d227f6195106f3f13dea92b8e077b71a72e7ac8
MD5 b3d4b5e2afed39a67097b6381752a70a
BLAKE2b-256 84c26654509d60c42297db55677b4a9bb80bc3176e105b7e0e74f206b825ea9a

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3.win-amd64-py2.7.msi.

File metadata

File hashes

Hashes for pyFAI-0.10.3.win-amd64-py2.7.msi
Algorithm Hash digest
SHA256 7c02fefba0664fc8466000180c3213c346d0717f1f30622c2a50564ffa9e40c2
MD5 767507d58b9d5f137b33ceecc7e31a4b
BLAKE2b-256 c1766b5559b5a241f4794a3e22774695e9073af0db4e69013a165d24ae199df1

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3.win32-py2.7.msi.

File metadata

File hashes

Hashes for pyFAI-0.10.3.win32-py2.7.msi
Algorithm Hash digest
SHA256 4db3d36fff1a9bd8ec7684143e427ed35feb82536a5cea18a302e7883ffd1efe
MD5 686cefa2ca06a501d89e597ca6421bf4
BLAKE2b-256 08a026fde34533baeefbc678ea13752a99a52ddcd062509ccc7caa85f716c8c5

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for pyFAI-0.10.3-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 4df9c7050422d2f9f8bcea98f9d611936e429682d67fe78779c3bab54275b90f
MD5 79c4fc32b00dcd10031ae61373013317
BLAKE2b-256 ecb7a0114ad9c5c6a47c0e8181cc38c5835b0ade407a7758db0d3f1f223bdf9f

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3-cp27-none-win32.whl.

File metadata

File hashes

Hashes for pyFAI-0.10.3-cp27-none-win32.whl
Algorithm Hash digest
SHA256 89cfcbe934f487967dc1c88309a91b3ffdbfea3ca3cb1b9a86949fd8b584cc7d
MD5 4cdebca527faab1cd34c3659b76a9930
BLAKE2b-256 ea05c0ed17e3dae227f5f1dc60f57858514740a8f1c30c4815e9627b9c64bddb

See more details on using hashes here.

File details

Details for the file pyFAI-0.10.3-cp27-none-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for pyFAI-0.10.3-cp27-none-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 1bf89830ade39f855375c5e300431bf5bfb344a2b5ee84e796a7f622cc1c18dd
MD5 fa4d4f32afbf7402f7205fed0236c024
BLAKE2b-256 7442417c37ad80a828d0f5cfd26115a4c56f103fbc90d3a255e9bf279f55521b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page