Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Build Status| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012:
doi:10.1088/1742-6596/425/20/202012 http://iopscience.iop.org/1742-6596/425/20/202012/
* Implementation in parallel is described in the proceedings of EPDIC13:
PyFAI: a Python library for high performance azimuthal integration on GPU.
doi:10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014:
http://conference.scipy.org/category/euroscipy.html (accepted)

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

Provide the *--user* to perform an installation local to your user.
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation.
The best solution remaining to install the software into a vituralenv.

With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/master.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-master.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/master.zip>`_

All files are unpacked into the directory pyFAI-master::

cd pyFAI-master

Build it & test it::

python3 setup.py build
python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

python3 setup.py bdist_wheel
pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

If you are using MS Windows you can also download a binary version packaged as executable
installation files (choose the one corresponding to your python version).

For MacOSX users with MacOS version>10.7, the default compiler switched from gcc
to clang and dropped the OpenMP support. Please refer to the installation documentation ...

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 setup.py build build_doc


Dependencies
------------

Python 3.6, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.6) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.6) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)
* Valentin Valls (ESRF)

Contributors
------------

* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Build Status| image:: https://travis-ci.org/silx-kit/pyFAI.svg?branch=master
:target: https://travis-ci.org/silx-kit/pyFAI
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/master?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=master
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/master/?badge=master
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFAI-0.21.0.tar.gz (37.3 MB view details)

Uploaded Source

Built Distributions

pyFAI-0.21.0-cp310-cp310-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyFAI-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (21.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.0-cp310-cp310-macosx_10_9_universal2.whl (8.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyFAI-0.21.0-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyFAI-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (21.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

pyFAI-0.21.0-cp39-cp39-macosx_10_9_universal2.whl (8.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyFAI-0.21.0-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyFAI-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (22.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

pyFAI-0.21.0-cp38-cp38-macosx_11_0_universal2.whl (8.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

pyFAI-0.21.0-cp37-cp37m-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (20.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

pyFAI-0.21.0-cp36-cp36m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyFAI-0.21.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyFAI-0.21.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

File details

Details for the file pyFAI-0.21.0.tar.gz.

File metadata

  • Download URL: pyFAI-0.21.0.tar.gz
  • Upload date:
  • Size: 37.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0.tar.gz
Algorithm Hash digest
SHA256 08c0aa72996ff6685c2858fd8e2435f3b9996dea1959a308703908a2f84c2f65
MD5 8256a95bc722536464c6db43785a78c0
BLAKE2b-256 2562dc9a7ee9719e9ede4865725b426a32cc179f10067325f1744835f5e83372

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b174380e95d8b0004af0b12928b81bae838cb422a2d4ca623213beb08d8d39a1
MD5 46fa77bf60d4adccd053840a151f8791
BLAKE2b-256 cc8c2a9c609981e43b307100c47c5afdced96af084361d325b9a285210e24ae1

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 166efd88a16f133121d2a187edf9eae42e79578fac6ad4ee16ecddcb51ec2c62
MD5 d7e33c856b23c19bb654c2393db2dc69
BLAKE2b-256 6c749ec208af60b11af138a1be1e2bf8b2ead2725006c2bd49089e0c18c0efdd

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 df36602570329e510791dcbb605d5da3eb8a79cab7e237c2f8cedc1ca1c6fdb4
MD5 32ab2af538719341688a4f4a1d470667
BLAKE2b-256 e4a18d50e594b593d50e32b5d10f6e8853e943828c303f67343b843608b0603e

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 de15e1a89a8bbdc507738ad96445f8eb4964256be2500f40c336ba500266da24
MD5 81f2f442079a16835de6bc28ce518202
BLAKE2b-256 761733f20c531bc7152c560ba5acda3450b241f96a7b3aacbe9578d1efb2c8e7

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dcdb68fae3f514e12e815a1542033a811f5246ded2c5617c1be8864f4e156ec5
MD5 102231bb48d22f0ea547ec20e531a8c8
BLAKE2b-256 856e13df643781055cf8abdee7f776f86731a6a18559730da60d2b21e016354d

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c39dd9145c67573a7cdc40cc9f75766aee175b97b1b5b6b81f847a38bf3de801
MD5 26719289c346eddf51b13c7102ccddd3
BLAKE2b-256 e16577b3084cc3fb6975a5dde4cb3e686ddbe7a6dbcd0c4e1cd450b9e472f759

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8554e8f486eb595b87c1a6cdcf80b2d2319a0c24b97e2778519b99f4855e070f
MD5 755ac9945c5b978b1ba2de23c9a2154c
BLAKE2b-256 3600f9ae97d85221fb1cb7b9db7fc357c0a41247e93c5de64e1cb31e798623b2

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 17f0a85a581759cb9c8977f4ccef81b35283330271b503f624831a2677135be4
MD5 096b58bc9f19d51eeed3ea45d1df45ee
BLAKE2b-256 5139627978c104b197b95d3192a88c44eefae5206bf4092cb4bea313ff3f0de9

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f1101b8ffdb77feff3809038575153a55e850558c98c26753cf6e86a954dea51
MD5 feb65d8b227a2c4a089f8a84963ba766
BLAKE2b-256 f7fbd36e45d64c98e9ee1d48dd1536aadc0216e055106be6d0f0ff2130727d15

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7074d8122abdccab4ecfa7f862c353cef919cc62d2a5710e4b05cbd3b63217ef
MD5 1aac0facf9dad1532130b567a2d02a07
BLAKE2b-256 16275303295e6cc14f8f78566ccb89764feacf872f125090f5a50eeac3ac6f3f

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf39b96aad5b7234bcd40d9e7f12edb2250d6079d96f46bebde58908743c8d33
MD5 f88cf703db7ef6f98815ce793e7aa259
BLAKE2b-256 e8b4fb74afba9f14e93194c235fbfac668bdd363b4a34723f8306fde81697077

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a5e300f0b8a57aaa108b98a8968c0ee9cd5ee91fd49024d75916eb107d996e73
MD5 738ce5ac97c4812e0ccebab411d7c8a0
BLAKE2b-256 8c056d126ab35257560097ba1baea9bcda8e5ce9cfd0b8bb59ca5523e35b707d

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 31f76911deade0a7980864763a42abf338c2926e8280998d7d09c3a0f75afead
MD5 596da46815658c0f38317bc90d2fab95
BLAKE2b-256 28bec058744fe0260c3f59e8dfb593e160f7cfd03a832a0aa97a0e8de65d23bd

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp38-cp38-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 02188b10f282ca8586eb1c6c3faa5de6452e506408641a2ebd7bcf8c3f9dc3ea
MD5 3770993bc080ee386bca6d53d4d3171e
BLAKE2b-256 216432a46df9ed5106a345b6f5e38fc0afd257acc050cdba352dcb22ed3ea498

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f6b712ce0c6846f2dc378625db761e0094b9b10c7818b6c2457bf093a0a1a34c
MD5 9b8ecf9a313d8b0d9500955ce2f618bd
BLAKE2b-256 9602f9017f1b2e780749e4364689d5a9355706959ea86c4e7b68f25ce05cbbf9

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46c84b3a76d8f4d7071a846fa948b233100bf9bdba4be2dec5ad031c064319b2
MD5 7e1d18262cc94059db5131489a23e1fd
BLAKE2b-256 797b8648bb4a21dd7949935335158d675c2deb5dd638f53273ca27a4647794dc

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 afc9aa3027b3beeee235d0dc9f2fd5b8b0ff5561c0fc7604fc175dc88f5ce993
MD5 c96cd1c2b8762c346541fd104c43bc96
BLAKE2b-256 7bbdf8784ee57f6c2332a2e11d3ae930b2032d327faef2ffdeb08f354ee8a5f5

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9149ea166b20cd5fc42fdc0576f42359e05eb74e8a9e79984395ca6bad640de8
MD5 998757219731dfae30b78a19eb0b54e0
BLAKE2b-256 6c7b32a90c1113f459628e9c07ac42300d423da0a7ed54d4558d764ab6b3a3a9

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1b9750d510e8e383b0ad96da24363266c0fce74150cc1ebd2a1fbf5f2ebe0c2c
MD5 2791e57d607155eb37ccfbda254ebb15
BLAKE2b-256 7bb09fc6f088cce5d17b72f6097392e1151b5ae5022df13dc68af8fac16f4cd7

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89a6b247418b5fcf7ea1ae6412fdf901a6a0b41a58f4ed44a9cf0ba8fe6416eb
MD5 739afaff34a908207214fb0c93a459c7
BLAKE2b-256 50ccea21187f25295d807803857c9358b4dcfb9084ccb7d44988f87ad420ee65

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: pyFAI-0.21.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 16.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fa1d1cbe6fd62c54803f1000e54a8a7fe9525c07f5b994c220fabe60e94a092f
MD5 ef8e61697faa502071a9fc69f4a5af3f
BLAKE2b-256 2996be19f2f7b2fdca277902d991ceccbab9f044952e2de46ab6b61f9b9037e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page