Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Build Status| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012:
doi:10.1088/1742-6596/425/20/202012 http://iopscience.iop.org/1742-6596/425/20/202012/
* Implementation in parallel is described in the proceedings of EPDIC13:
PyFAI: a Python library for high performance azimuthal integration on GPU.
doi:10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014:
http://conference.scipy.org/category/euroscipy.html (accepted)

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/master.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-master.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/master.zip>`_

All files are unpacked into the directory pyFAI-master::

cd pyFAI-master

Build it & test it::

python3 setup.py build -j 4
python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

python3 setup.py bdist_wheel
pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

If you are using MS Windows you can also download a binary version packaged as executable
installation files (choose the one corresponding to your python version).

For MacOSX users with MacOS version>10.7, the default compiler switched from gcc
to clang and dropped the OpenMP support. Please refer to the installation documentation ...

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 setup.py build build_doc


Dependencies
------------

Python 3.6, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.6) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.6) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Build Status| image:: https://travis-ci.org/silx-kit/pyFAI.svg?branch=master
:target: https://travis-ci.org/silx-kit/pyFAI
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/master?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=master
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/master/?badge=master
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFAI-0.21.1.tar.gz (37.3 MB view details)

Uploaded Source

Built Distributions

pyFAI-0.21.1-cp310-cp310-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyFAI-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (21.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.1-cp310-cp310-macosx_10_9_universal2.whl (8.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyFAI-0.21.1-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyFAI-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (21.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

pyFAI-0.21.1-cp39-cp39-macosx_10_9_universal2.whl (8.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyFAI-0.21.1-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyFAI-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyFAI-0.21.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (22.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

pyFAI-0.21.1-cp38-cp38-macosx_11_0_universal2.whl (8.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

pyFAI-0.21.1-cp37-cp37m-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (20.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyFAI-0.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

pyFAI-0.21.1-cp36-cp36m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyFAI-0.21.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyFAI-0.21.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

pyFAI-0.21.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.5+ x86-64

File details

Details for the file pyFAI-0.21.1.tar.gz.

File metadata

  • Download URL: pyFAI-0.21.1.tar.gz
  • Upload date:
  • Size: 37.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1.tar.gz
Algorithm Hash digest
SHA256 dd3e2f356fd546642d0ab3c2f768e29d8a060c5679260fda67f308714bcca483
MD5 487ad2760feabe14d540313ee655c724
BLAKE2b-256 7d6296d1f5229ec5c498e4c96697aa1ffe8d481e742ca2295a991124563f59ed

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 93712965c3fdd8392317d6448351f4dbf0b88e98c22d12d262b844a2793ac813
MD5 6c577ec02ea6a1bd5ea2992ae69bba8c
BLAKE2b-256 50e9ab2fb78aac43e2662a1e3495cef1fc8b7cd0ed6ca60cd2e83fade4244985

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f71ca666fbfd0ef449a0dd3f4f8b13b050e32afe5bb7d09614da71ecd7426c9b
MD5 fb6390d06a5310631bbc49ebd9eb044d
BLAKE2b-256 1f81e485580483028687161be16e655f74e2c1729af73d320424b380bb7c38be

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a1bbd11f02a8370e875369dfa782f093144e955c0c9f39ac6a2f63b932ab89be
MD5 1f40d9c2c5cd850194f01cc8ffd13900
BLAKE2b-256 0ad56c7a3c69ca3394e02664cc0a34b1e9487fedb1b7b50e63a676f5536a6e64

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dfd803335f866b3b41e415ca26b3ff21e7c552b7176a515e8d1794bc19895bba
MD5 b72b585d12ef8c70b19fbfaa0ecb3f31
BLAKE2b-256 4c628b5f197ea6df58f811c92962aa799699d498a3c8afeaf5c159cb742d1252

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1878ca57bb3beb8b87e91518f41d32bf30133bcea51c2825a066b61a19f8dc11
MD5 53fa6a3014a6909e258ce5d7d758e18e
BLAKE2b-256 154fa339abebdb881d739db4bf194896ae7c1629d41b0a599c51f00cfe802a1d

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28b7d330b86a13cc12934e98f829f3a2a397a2926169ee1874130eeb6a298dfa
MD5 5938d2b9906c3d6357c325ac9f824a5b
BLAKE2b-256 7ab45a228701ca6fac41ef01710f9bc65fe050c6c76d8d7c86251289da7576f5

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 79ace81aae92456832cd8bf35095a6ffd86fea00d9d70dde3211a27aa3cfb121
MD5 211c20f28e754ecca47105fd90953303
BLAKE2b-256 46781e353d97e1df731c3491abc141f1c25bc10d0d3c01eb27ef5f4f83a488ad

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 94a6521d4b0d244b7bd07d233d20b180d273ae5972db50d1316c1765cafa1c89
MD5 78a3b088aaffe27a0033121e1650c442
BLAKE2b-256 647a4fc1959275eb2fc87e66dbf99245ee4f315683476a4896a80347fcac8c48

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 017c8bc534aecaa368b44b36119558f1c78c1bb6af82e30d4f1dc53ee4cf3705
MD5 5d985f595c9d40f448b6b679f167ab14
BLAKE2b-256 5fa48822f18173204bdf7039c281fb8af1ba5f956f40638073a928f7a7069ca7

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2781e59c5d4558b5f1d1ec9babc790c573e1af0bc81f57417d04ac6eec61978c
MD5 398e4ff34f978f939d65a3e941866e20
BLAKE2b-256 41905c7bff7e3636a9ba257e81cb550d8f0db9111e585f157023ec8449e1dafa

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9da25e328f907eef34a65b3dcea454014a006599a0329f009de3fb046dd2478e
MD5 00d62bfa51d48bb2fb96a6666900b3e1
BLAKE2b-256 75e6c4f52effbb8cf28087ed46ad54497590fdd3de96ab4ea91f6af71420162f

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 43df076a91c6f896309e0e8c3da06d1457304a34b8af69ff95222d1d5c243b39
MD5 7386af8b552b8479f0f485690742b3d6
BLAKE2b-256 ccbaed5416b543e2b46888c14f4289508369af9d382e86a46cff6e403f05ecef

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5e78a7985245474079da718271c081d20d70f5f4fa0c25661912d6971c603810
MD5 7e9f373e6b53ab992e7331e2dc94ffd2
BLAKE2b-256 30ea006d6274e30cf96c99bfce7b1a3047f08b30b1a4188d53ee156023ed1eca

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp38-cp38-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 31502e737665ddcc2d579e416695ae6031dc8b361b649241771227bb4da5fe62
MD5 03d41e016a4de4f23ada1cd94a0783f2
BLAKE2b-256 4d19af7de897c1ce85abca9ceb2866db339774fa2931cf36331f2c680e772e0c

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cbf08051b97d9f2b9be4778d3f02c6d98fe65a921a8e25e05850449a92bc6eed
MD5 6bc42c2ea621c441226f14ce279ec8ee
BLAKE2b-256 941f199440e0fbf3b9397a2f50bd3d863bb4748e212447b7e2405c4eed50b78f

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58ab53eb2b26a53aa5a6613c4816851fac8eab8b4266efbb6da2e74f5026138c
MD5 c707d7a2ce976aa22b1e999867c0abaf
BLAKE2b-256 546e694f6384c6c938910d1daf7f3fffa3359313d3182f71318b4a69c2b9e66f

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c5910dee30b0b92f2759331507a4a7f1a20c7b3f2c9521ad4041a195db24bfcc
MD5 b4a73837c862e2f02a192c3c46650c31
BLAKE2b-256 f92ee30d9f9594972beb44f8a11607bfd10f4b22beb0793a3c08c2e0aea3aa62

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d65e4b502d2f00f81cda3906757dd7b430c0c052db9605e008bc0aad01b0935f
MD5 5c47da568ad4527baf270e70f2fe164a
BLAKE2b-256 ada9062069f4f87c947b990fe17046cb627f32d58a97f5b384f1b3b1c8c2b701

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyFAI-0.21.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for pyFAI-0.21.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6b8eb746eb68e4e25e07cd0a2955203608101c0bdd555fe5cb92dbaa4096c4f1
MD5 1fb76ce428002fe0c0adab7b8cb9ba46
BLAKE2b-256 390dbc51631b80696b397a330c960f1014edff3452c30af06aedf5f1599d2c2e

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cb41c0b6b8021d7c17403fbd8bf6fc483d209a31fabbdb19d0dbd70cedbbda8
MD5 80156741a9724ea34176b37dc2ccbd90
BLAKE2b-256 0ac4a1b1bcad16bf0dd9f5112ca0cd304941d15ad033952e4c9836c7f55b1857

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 84cdccf5efe9802018230240d73c308c4b3462a4d65c79f1d5a2fda133b0635e
MD5 4d090e3237c87fe9402f216dc135c322
BLAKE2b-256 52fefa724de0bc138d318028ad194b9a8ac3388527824a54df9e743aa4012939

See more details on using hashes here.

File details

Details for the file pyFAI-0.21.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyFAI-0.21.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8aad041e6db22f3532b241b11478bd5252b42df09290a41b67b6d366fd7bf340
MD5 bd09d7a5e3ca2f0246672736a6d6b173
BLAKE2b-256 c292ada233c400d50b926cb9d4477331029619d1dbb73f4b8624184a7e684886

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page