Skip to main content

FabIO is an I/O library for images produced by 2D X-ray detectors and written in Python

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2023.2.0.tar.gz (41.7 MB view details)

Uploaded Source

Built Distributions

pyfai-2023.2.0-cp311-cp311-win_amd64.whl (17.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2023.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2023.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2023.2.0-cp311-cp311-macosx_10_15_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pyfai-2023.2.0-cp311-cp311-macosx_10_9_arm64.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2023.2.0-cp310-cp310-win_amd64.whl (17.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2023.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2023.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2023.2.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2023.2.0-cp310-cp310-macosx_10_15_x86_64.whl (16.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pyfai-2023.2.0-cp310-cp310-macosx_10_9_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2023.2.0-cp310-cp310-macosx_10_9_arm64.whl (5.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2023.2.0-cp39-cp39-win_amd64.whl (17.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2023.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2023.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2023.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2023.2.0-cp39-cp39-macosx_10_15_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pyfai-2023.2.0-cp39-cp39-macosx_10_9_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2023.2.0-cp39-cp39-macosx_10_9_arm64.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2023.2.0-cp38-cp38-win_amd64.whl (17.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2023.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2023.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2023.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2023.2.0-cp38-cp38-macosx_11_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2023.2.0-cp38-cp38-macosx_10_15_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

pyfai-2023.2.0-cp38-cp38-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2023.2.0-cp37-cp37m-win_amd64.whl (16.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2023.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2023.2.0-cp37-cp37m-macosx_10_15_x86_64.whl (15.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

pyfai-2023.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2023.2.0.tar.gz.

File metadata

  • Download URL: pyfai-2023.2.0.tar.gz
  • Upload date:
  • Size: 41.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for pyfai-2023.2.0.tar.gz
Algorithm Hash digest
SHA256 97e5cd96f5992af44528fd33b9f97668f4728bb9e45bdf79a7ee23b71d2c5b4c
MD5 2bf1bd9ef84f562890bd3be84f9b8887
BLAKE2b-256 fc35e6ccd07aeae760c1320e0c6919cf9c6a88c140a62a13d7b831180b85c56e

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 95865e472f39ec9b0bf4c99b497ad0558462002c132f4a435dd2c29c817d63b4
MD5 6d1351c4dbf63abc370bcbbab3a18ab3
BLAKE2b-256 68da0661d29f68bce49e934562374a0babfe7734c4913eca32ac4385f455165b

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcaa05b2672a8f696c07e0bda2974421d782cdc42e50fa1def975083769e6a67
MD5 8d83dfb4a83bf4a401d11995c0827bdd
BLAKE2b-256 3efb97cfc04ba0e22381844f40b516a643ea9e583b2b9d6d984f4890f4f9e44e

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 03f00847712ca1037d3f04c547c5dcc31219a4294e8f51764c7d4a3746d08d93
MD5 a923165879aae3ba913844918f7432bf
BLAKE2b-256 beabb641f8f1a7bd2d7f6b91de7b90af4f69d7f3f8ac8a456d22a66820b3b571

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b0268c6a4c6920bafcd6f157be24d4261ccb3e39c2d419a0a3f3f6a92418dcd
MD5 aaae950db4953d17bf8702da656553c5
BLAKE2b-256 a8033d4d3b66dd048bcd81d05dce5338d292c8cbd0103168052548438ce43f9b

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 8e20579bd55d43e9a87048651a1b6f0ee9786872cca43efe562f9bdf34e938da
MD5 9e4fa2ba79cadcf4355a7938f9559cf6
BLAKE2b-256 68d3f0c12cc784f2405da1cc78da43ea15b8945b8b2dace3f604e87eafea85ac

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5aa35f838aead263ff1540003b928c638096b9fd73d7e342917b8fd76a4efeba
MD5 494708e9b55c22080e1d10596079ca3c
BLAKE2b-256 50a1bfe1a8c052d78d4439be84cb866dcc6d79eb7a949dace33fb4d002fae44a

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5ffdd1136c486bb65525d9c8ac66156bde2ad6696b9a59c8a7977ec64c8b9c2
MD5 a9f2711fa728e0656a2a92bd0e45174d
BLAKE2b-256 fe0b73b20133bf90912aa19b15e5d91397387b0fa1ba12a35983b2d944463464

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8bfc2f208fcaff8a335abaef1db667ebaf30f1714914535f8ae87080106dca86
MD5 02cca54be6d8c6015de2d110e029f3ce
BLAKE2b-256 1e677cdb99c4c1f1c9147a46ce3a5828a9195b64efbbe05b6548959ead95603a

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d05cee476b283dbd997c0edee2c7b7baa88bba7db3e48f9894c46d43c37a076
MD5 f62a84fb7bb8ab4596f0afeac03e00ba
BLAKE2b-256 eaba3ecf3e41704eeb1cd263120e06ce0761ae0a7ec95c46ef44a86ba90d8973

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fcc15c61ad2293e64552734f89c14e3a7660c15c5cb12d2cd358ec6dc47af8f6
MD5 be5614613ce99c515e4be864363bebf9
BLAKE2b-256 b6a7ab3077595f58c24e67ac2e1f87e62bbbc4dce1959fbc029179d983c1ad53

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 311720e979354e95b017b45f97bb380e33053ef7bcb68e4991e3edc7855a3367
MD5 16fac742c5b94d05cf6678306dcdbd56
BLAKE2b-256 4ee305f312153983b556152faff787c130f0fba2a0048c808d7e81fa581270ca

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 5a02ae5bde8a6b72295ddfb9ef2ea2b9bd548c06dc3818d7151f7190b3f88a6c
MD5 6a4286f5565b05d47cba28d9121b7085
BLAKE2b-256 c0403a4f76ac4bb8a1515bfd30f0c1fcb6dd8fc86cd842a1770136291c743b72

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 22d353797088aae85b4da52052caebfc6123312924a8a7fe0cff594bf404635b
MD5 ead118d0220085d7d97ba6c2dbb92f3f
BLAKE2b-256 32e1cfa12b719bf23f95004e9e2e6e0081b3d7b114985a8044f1f549afb8bce2

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d56b6ab66704504b340315392945953fffebbd6a77554ae54a4fc5877421e5f2
MD5 91853ffc593592a2a9e13ca1c1da819c
BLAKE2b-256 32fd52a302c8cc1bb9cab5067fbf253f0d5cd86c858580e411be38da2366332e

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e77e2230c8e07e35b347f831f817d6f27329862105318f9ba9082e3ec9b1b967
MD5 893b9acb16ae85dc0da1cc0cc72754c6
BLAKE2b-256 74cb1638f3266ab220f0da5737d4cfbf377478d6faa13d9c169ec596c25980f1

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6417bee52f8c2dbad1d646e5f48ba375f74ea9e6fc1242dfb654ae6c66ff7bdb
MD5 9be4b63bf130fb0910195d81c3f99bf5
BLAKE2b-256 89356507a38752d992a599a3456c889c115d34ce98c71cefdc496b5a636bc8ee

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a20ec32a3cc8d69320a522262744eefac354648bf208747d391d38868c9deec4
MD5 b999b7e40b014d343b273243dc182843
BLAKE2b-256 477c492fc0aa6caf9d41b7807f7d8c2022b0feda813e92fed2aa2a7f85452d29

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f078d7e1b07bdcfc3020f4cae885f0941d9ac7305218e3342ae48a8bb2340ac
MD5 fb7cd108f7327e472aebfc381b7354f3
BLAKE2b-256 92abea484777eef60358a4ad81fc5e18ab3532f25236177a4ccbd961441a4f63

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 0a9e7e5c5f55bbbe0cb42fc1c4df7552c6f3c855ec27a766a0963677d5ef05cd
MD5 be23965f432dbdf18b323a4d2666ae22
BLAKE2b-256 3758107fd27cc725b57d39baa24a0726f3eec972cf8287dfa9ad281f5502a334

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3006cfa283324eef7aac4b4b29c8ac2110c01f6513a91ab0f5a3aae92f6fc5e6
MD5 632b362bb2268505d517c9b917f08386
BLAKE2b-256 ab123dd3558620cb83d6d8b78c2b4435490196ee92aed3db20f4deb064a5d5f7

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9fe41fcddd2eadb5a40a5e3f9f6bfc827fb96d63b24de0fa5f44f8f890dc0b9
MD5 2a60533248bdc1ae3514f7445d80d6c1
BLAKE2b-256 e2ea3b13cc74a37cd5d6cb0808aa981bf0fed34d8327c570b382d95d62e2aef2

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cde4b5307a2b421a8cac30815c94f170e0e7a3d7b0e397fa687e614ed6a25df5
MD5 df9933c446c4ac0795ffcadc5f4e1148
BLAKE2b-256 062df62583deb3961748d0e699a9bfeda45999bef6e582b2d7f33bf50394c57d

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dda0f2201cf589698abda0feee1b3c7ed4dba714ccf4820dc392cf4f2d19e0dd
MD5 01f7542e8bd6c9a46ba0b6a3863e5ff9
BLAKE2b-256 83206f320a5df435bdc0a241ad0e32cd699b583272658a1b227e971127d775b0

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9de7acedaee65faf72110fec199341debed4a37caa095d3ccdcfc1b152eca486
MD5 758b9752a8fe65e3d6d9e0447c763567
BLAKE2b-256 55b1c27f2f0de059f73759061179083f7e76ebf22da37d792616f148d188c0b8

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2116356b648667bb5fcc3f3b8360d6839f0bebb2dc4c4c19da8c057b9f624c67
MD5 74efb92046228ea249df36be68e3f2f9
BLAKE2b-256 1f328037b58b509c125e9a0650ea51cf707d6bdb93f33e352159a4149e8919c0

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cef1dec0788ff43b0fa7e6e937f885ee923b02b00500d910ec61acb8dbe5bb44
MD5 42a3b41f55aed802e39572aa031150ba
BLAKE2b-256 15f95f5880fea9cb56a3c7a4e8479dee4cecf211ccb5844be4ae0703224fa093

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 16.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a030cbf1d4f38c10412c557cbb26301ecc5d270334abf1352e938106538f7c9b
MD5 0b35dcfada86d1678e8ee11ac8f277a5
BLAKE2b-256 39492e65ec59b855c676a35892a4ae528ee8767385559548d353d0c62d3edd4b

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea4e2f37c794501d2428f54bc0aa30f1c0ee565668415c6acc8203d5ce182fbb
MD5 ffb2a5535374b79f58ba858cbc5f94e6
BLAKE2b-256 28e6fce2fe3a6f797987abc54450faf2d71a12c271d6751e2b515574940606f8

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b30a93ca8d91c3b484ccea8cdbf8de01e2e57d97797871d7d97cda3f2b4ac544
MD5 aad1dbb395f61bd79ef58333b6513cda
BLAKE2b-256 157332fedd519afc560f0e472f79468ddc9dfef307cdb02ec29405788ae7c7a7

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ada131c90d9eadceac2e859bb42ae48222f562f52545c23ea1c994dcd26fe57
MD5 775b160f88ad9bb4f4a15ea6f1341606
BLAKE2b-256 224050e16cffec6e2e05e333aa2ecf3ee5703b86a86cb2dca91eb12e38c4ff4f

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 33f451f80aabe8a47053ccb95fc4f6907058ac37a1f39f11b782d83411cac0e7
MD5 4aeecf1b76e05ba781e1c822a270575c
BLAKE2b-256 aef3b7ddeda5735cd7b74c2478a832f0405bc3066e1692e3702b0723bbaca229

See more details on using hashes here.

File details

Details for the file pyfai-2023.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fba2df379bd98632d37a81c0588240f322691eec2ae1633b92d38671c594001a
MD5 6275f4c86091cced577c86eb09c8b69d
BLAKE2b-256 5b3ff494ebef2771993df483c91314fff01164fb7212d455de64c4651ae49300

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page