Skip to main content

FabIO is an I/O library for images produced by 2D X-ray detectors and written in Python

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2023.3.0.tar.gz (41.7 MB view details)

Uploaded Source

Built Distributions

pyfai-2023.3.0-cp311-cp311-win_amd64.whl (17.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2023.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2023.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2023.3.0-cp311-cp311-macosx_10_9_arm64.whl (5.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2023.3.0-cp310-cp310-win_amd64.whl (17.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2023.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2023.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2023.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2023.3.0-cp310-cp310-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2023.3.0-cp310-cp310-macosx_10_9_arm64.whl (5.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2023.3.0-cp39-cp39-win_amd64.whl (17.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2023.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2023.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2023.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2023.3.0-cp39-cp39-macosx_10_9_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2023.3.0-cp39-cp39-macosx_10_9_arm64.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2023.3.0-cp38-cp38-win_amd64.whl (17.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2023.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2023.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2023.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2023.3.0-cp38-cp38-macosx_11_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2023.3.0-cp38-cp38-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2023.3.0-cp37-cp37m-win_amd64.whl (16.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2023.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2023.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2023.3.0.tar.gz.

File metadata

  • Download URL: pyfai-2023.3.0.tar.gz
  • Upload date:
  • Size: 41.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.3.0.tar.gz
Algorithm Hash digest
SHA256 2b51571f58613d294824e045cb9599136038f5c53ac6d693ec6dd23e9576dc0e
MD5 9a10586f914f2ebab740faa1ee1104bc
BLAKE2b-256 fa685c55153335819ececc7b5df75e3e676fa1c4b3cf10a67001d6d2084d9fc9

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0885982f6aa9491bf58dfed62ad243e39b555ca646f202cf64268cd3a908eff1
MD5 981ea93f81df31d59378b01dff807a47
BLAKE2b-256 4ea86c51e09e0eec7d54a24e5fdf3a8f0bea06bda275cc431594ddac37ed496c

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f73777f4ed244ec7f1d1528ed4acee7c7dc33ccbd6c55e38b3b60747f7f5154
MD5 166456f52c6be952dfddc1bd509f1a96
BLAKE2b-256 9b37dd73432204688fa85ac86de2f5c3d6387d4a8b5f28290b66cbc2f3596c0f

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ea0fd11851dbfd77a8911f4a454c3d93b8cc6fbfa6c835332cafcc4095967c30
MD5 73ba721cc5d2db6b9180787adefa2e02
BLAKE2b-256 ed767c6af609226d6a83a504e37178f8d0f25fb844ea28c6fe95800953dbe486

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 3ff010ece6c758aec2dc52e3a6f8ed02ae3ccebf897c2d14cc71596822374f21
MD5 052ed2bc2b3470d53850b96963a8b68d
BLAKE2b-256 27def2339bfcc2986ec6215d5ebd83478709b2418984c3b7a9a1be18ba8f5ae6

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e38cfb81add360e8bd619852e0de386123af5f4b8e4777725123c2e724c4f1e1
MD5 4b63ab5f89658219c7bebe985ba83b61
BLAKE2b-256 1eb08d9416195ad34998a3a3b7d867a3aa63f6bda213ff3b183238dd6bf1bdc4

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7123b72ecb836b1a0ca84ba9b2a5a6538afd8ae6ec6aac30537a8df05368f184
MD5 a65c6bf7587c524a60a76dbf86fb858c
BLAKE2b-256 1fdf8c97091dac561e7682ea6015303c0b21b48c57cc5dc72d2c533cddb6f2d2

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 87ef569180c227ea48e54c733a85d1189051c44a944b128d67fcf91430dd0e28
MD5 bb0369c59094050ae3103b73789094af
BLAKE2b-256 5ad2d4169f7202ca286e393ac032ff8a85851d44afa26b196532af2e12db33b3

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d55f1aa8ffd806d59838f75a3d198f95f9d7d678f6788b32a96b0d429cddc00
MD5 cfb350831c79c2eb210e3ababc104006
BLAKE2b-256 9d57a46dbeb5b5f6af2ffdc003ff163c702f71f9893e9031f31f47c40aee7c55

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2abbb15b23bb670b5c012df85914841fd476727c87e64da5a3cd235c0adccbee
MD5 32acc0f7593266a0b0a568a1f5961e7d
BLAKE2b-256 ea049a3e456e3daa25023cf0ae480b960c210d364dec783c44e821bc16508756

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 f93c44ec0bcc47479da9e8036674d3be18faa48767d1692ea25a441b5d731be8
MD5 787f6f371b5df89474caca8135d9b081
BLAKE2b-256 e778597c51ba2cf4cd14b073e73ba58a6b7dd4aa02e1870085930b1c1830a910

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7fcc08154d5fc7e221c6f96194e02eb0afaa6ea2645e8549aa54e59caf337972
MD5 b698ab8a0df77bd9c16f458b0eee2156
BLAKE2b-256 a3a828624da4b493dd9a38cd549700f74932fca7b52fbe5b471ae7f10d5f0d57

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5ac935d7b624e65f5d9643f7bec2036f632c92cd78664640d792935044c2950
MD5 963d0e9ed35d4fe2f9f56f4f3ea12df1
BLAKE2b-256 29753f924fd5e89be2fee37facace0b4f6a244bdb0479c63ad3de805e1dea333

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a23a0ded4152a61d3e1b12490422567a7c2053fb6bd73de5c987efedfb48ec77
MD5 c3ead7a80e7afa06fec45dba8ee0aec4
BLAKE2b-256 b6a7d88e155993e2cb64801655a04d3645f0b3237f63f0c15a8e62fa9ce41abb

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 acc2bc9df67fef2ef627c2217508551a70265acb4d69027f134a9e4cfcd36461
MD5 3db1550c5080494458026f1cbcb315b1
BLAKE2b-256 e42d9745400870016fedff11e263bb23deffbbf52d0806789f95deb42a3faae6

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 edad7f6f8225f9c5a3b78dde918f0f9d9e17d1b9697e1c0e8191cb51ba5724c6
MD5 905783168c6bfa7b8c62faf763b5d445
BLAKE2b-256 70d15bd31b6beca7eed3f72aeef0fd1099d1d5b36ff464d4aa1ac0ac27e05b1e

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 d09d98f4b56836ad5a16e7d0e500fe47ffa8328330c7abf760aa21d5938f687d
MD5 81d43aa8a590e5bdedecc0de9be1698e
BLAKE2b-256 03c4641c6f5b0b348a1f2a34afec5dc221a5089fc1974e9d83d3f4c727068d6c

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2ef666b95e5addada120004ba844a415138ac4f9c213b39d3ca671f2848bd8d7
MD5 fd62283a11767e35a7436c25de97fb92
BLAKE2b-256 3662c5c6b0af8975f69d1cf591c7b899984adec05b457746c4557f692c8d25aa

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2106183b62a5c837fff7be94e2e78b374a40ee9cf5899cae6f40c2b4c68a21f
MD5 a31019b3a69deaee215489b00be7667e
BLAKE2b-256 79fe01bce437ed88eb6312f60ed05d61dbec19c959397d3a04001b85d88557e4

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 86fcb4666a2cc2d9ae9a5b8c6d319db20e5266059ebf7edf2b2fe29866d2da9f
MD5 62a40d731561d179ab633f8ec1076eba
BLAKE2b-256 45f6c73901616c39f50bc84f35afe0e8c3bd7a37915f13700309d858570253dd

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d06e8268010047dec390ed09b848f4c3817a6b11c62d5fb9262484b1a5fb1aaa
MD5 9328be8a294db85833dcce1f1f9ec3cc
BLAKE2b-256 de53c32de35768bb6eda1216cfcc42a3c4efaa760159b9731ec2497796335913

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c679b337edcd1d641070df5b8d7e36dae0a6988bb46904ddf25aae12ee66478
MD5 fcc87d6fd091c8afb356e0a840ea98d5
BLAKE2b-256 04f5b094fc5c62281c17046c04fe5df0eeb63f8d91d664deed2395acd6da9279

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eaceee5a95dc1b61915b9a4de04330238607b98db6bb580ddd4017eeef15a529
MD5 558ab4a455232386674c0aea75cc958d
BLAKE2b-256 83f0c87e3230f88911881c1c5428eff12634dc46e5a5e3a454e87e2764d06f20

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0d7581d2242459b1422f70c948070c9dc8de76159e3db58c8f02996680027ca8
MD5 89c5dd89351d91298520a1bd115724f1
BLAKE2b-256 29b240c3d340940694093d61a1dc1dd925b6fc492a3f3c93b6f963702c35bbc3

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30787e29ef92a0692e69e63bfd5d46277b14c356dad120279031d4f2bf617c5f
MD5 5623228f586cc2281e1c995762861ddf
BLAKE2b-256 1e4ebcf41f42c0ddd39f400626e93c3949063feb49b5cd7781d43296ac0e9ec9

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8cb7f30dd137bf8c9bf97fdb6bd000c138dab117b43220af06ad68a157ebfed6
MD5 5ae67f457903047681c367809858b41d
BLAKE2b-256 9680a2e6233318dcb7c4d04f9815fc6bca32acfc5e356c5ac01ec55fec13d31b

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d88830e8c6d22777c8dc34ffddd89432160bcb7e4d44c8e15928c1e3dbaaa87
MD5 07de6eeb1ea099c7dc5788ff439b9746
BLAKE2b-256 7e5e65e66548b3325b7cee70424d5daa30208c4f6cd94fbe6f258ab6ab75d9cb

See more details on using hashes here.

File details

Details for the file pyfai-2023.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27a2e5f0c560023d321dee3f957b8a6424aea05c57007d2b410e85938ff53351
MD5 9a70d6ec6f063b8b513f36b07c33d088
BLAKE2b-256 73f24eccb1ab2551f82b5fb6cba9177e791ae46858aa1f114c6a5872d581491a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page