Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2023.5.0.tar.gz (41.7 MB view details)

Uploaded Source

Built Distributions

pyfai-2023.5.0-cp311-cp311-win_amd64.whl (16.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2023.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2023.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2023.5.0-cp311-cp311-macosx_10_9_arm64.whl (4.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2023.5.0-cp310-cp310-win_amd64.whl (16.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2023.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2023.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2023.5.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2023.5.0-cp310-cp310-macosx_10_9_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2023.5.0-cp310-cp310-macosx_10_9_arm64.whl (4.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2023.5.0-cp39-cp39-win_amd64.whl (17.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2023.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2023.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2023.5.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2023.5.0-cp39-cp39-macosx_10_9_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2023.5.0-cp39-cp39-macosx_10_9_arm64.whl (5.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2023.5.0-cp38-cp38-win_amd64.whl (19.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2023.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2023.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2023.5.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2023.5.0-cp38-cp38-macosx_11_0_arm64.whl (4.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2023.5.0-cp38-cp38-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2023.5.0-cp37-cp37m-win_amd64.whl (20.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2023.5.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2023.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2023.5.0.tar.gz.

File metadata

  • Download URL: pyfai-2023.5.0.tar.gz
  • Upload date:
  • Size: 41.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.5.0.tar.gz
Algorithm Hash digest
SHA256 8c578a753340463b6c08e9949a07b5ee02f4920fe2b51f3afe8d4cf3d38234f9
MD5 3603bb0a6213860b4766ae04fa6724d5
BLAKE2b-256 5484ea12e176489b35c4610625ce56aa2a1d91ab235b0caa71846317bfd1192f

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bcd9885b0c2171fff17860637a97ca4cb1862f1f0240293eb8f6ac24c55b05c0
MD5 86df9750cbce7b7329fc3438829b8d64
BLAKE2b-256 49d1765ec7e44dca8d15a565430d62da57f65cc3eeff8d4c4dc45dd35f7ef226

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db192e54e30c5d4ccb9014179a4884175e17427822033bbeac5da9087aef3326
MD5 c95720ee1f4c58c66b06292079a08bb2
BLAKE2b-256 21c4844e72cd65401cee95b7206649f00546342e93b44cdd4372fb7446462bb0

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1155e591a4b5cd7f6b3e9f7a58bf5d980d1e126d22190d6c35ab793b7523f92c
MD5 84111cd3cea6d16736bf1428c288ba77
BLAKE2b-256 aff369753d27bca52c2141efbb0c0bbd3832fa45f36c8e5d55660ec10ffe9c0d

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 00fe714575939c939617b9dbca8303abf3e7e8529a2863f9e9ee905ce253c956
MD5 22c91af6cd6a1e72f89020b57b85a216
BLAKE2b-256 d53066eba1a0edece3b2e673e5881e18168b176cdf0444476fc495b07acea649

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 02e62c602acd91b00443aa1431f1e677dd6f6de5216892544fdb9aa317ceae34
MD5 7a87cafaa108c6b64c57dcb59f5cb476
BLAKE2b-256 9cba5095f27806d1f6ab24f9aaa2820650cf03f54273cf8dc7522880ff6ae146

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b80a1e8b7c3eb4510d08999f583d1c4bd414daea6578df2c68c31184088cf08
MD5 27ce77c83aad136c6f5181b75fb474f2
BLAKE2b-256 e26e9872ab47344226c650fbeb907cf284e75a5ad5352d55d04a479f9e095110

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0edb71247b731ede6847353fab4d8e24409e51b401359d325cb9572437ef8d6b
MD5 f3253a689201e2a1bccd1bb4d75c81af
BLAKE2b-256 30aedbfba74e707a06dc4e775c09cda5c71bd925d18034326e713f5d144342d8

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fd5a3a40ea327906ae0040f4495d0690bf9be23ba59c7d05bdf015c8b2169669
MD5 f6da9dcd55b9ca80b3d37659c08f10a9
BLAKE2b-256 1f59076d6e4cfe0f74b1c123b6e77bb2a5c714ab097b1efdcb38e3efde613116

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dafd25299fd65bfbc5a84a5f483f2d699336cb2562fa68148a0126478572d380
MD5 1cb37a83a3a0eaeb3b67e88f226460b9
BLAKE2b-256 807fd90f7274ad166d145ff748a0bea9aef33d6ba502c15deca1348741252e85

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 a7da14d3968a8ca24d4330fa7dfa7ff86cf771a2fa0af56f37b7f1b97b367503
MD5 5318168d6896afe4c9ffb17cd08f24d8
BLAKE2b-256 3cea62de3bcf049d04fa6657762eac7b4ba5713d5e365559f2743112b971d281

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 17.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c7389a5e462ebb394dd4367914bcc78b54a5fc53cebb8d5411d0f15bac87728e
MD5 e9a2d4f8dcdfd3ceedca5105f3c841d1
BLAKE2b-256 8fe102cfdc41185755fff7ff72f347973a205a949101c3c8f2691506ac2e93c5

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55cfc81382d4a8b0cf1adb070b9a978360ac921f508c4334526e975af7352dfa
MD5 29ed6088f98117e431aee5ffc6ff1634
BLAKE2b-256 d3ab5192cdc81c520a87702980e2db22c5b63f1688f9e04ca6bb7f6c5b6d9365

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 804d978cca011e52ccc109fb45c79c034540419ddca2f3da506dd579413e816b
MD5 2ba0d1b85430c2f6b3c18b6136f3ac20
BLAKE2b-256 574f770887e9327d4b9d978016db1a31a5eeb8da3877a83c328adcb3082373cf

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a3b4ed9e31538587ff1b702eba2264d9b61a3ebef64ef289b70bf5c85a97f3f
MD5 959be6575b5c2489b0485869708dd486
BLAKE2b-256 2411400ff960920d138da705c0e3b8dcb47e600182f954b0fb15e80fb6aa0046

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1298c29a8169f57e290be37deebd499e1412945e731db83d40528b26dd9424ff
MD5 24496064919d86d7dc56a2d8b5714955
BLAKE2b-256 fb02ce2c97d47ee7d7320f07d8ada339fa7b14dc2b54dd8cc0308f9dc51e5592

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 80305af243323498eb385fefa6c2df112e0c38426d2868dc8d736e68a8e8c697
MD5 933e1dc5ea46fbde1913fc4b520b65d2
BLAKE2b-256 e6a84216dfee218a4f4fc13b91eae6f3b490c55ee92b678a66cc30bcf8af108b

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2c998f51ec7e1ac999805d0904b6b325b2587252382bd18f98a2b0bae72e14cc
MD5 485565b34fda053250bbcaae9365f506
BLAKE2b-256 1cbfa433c6f42c1441377abea0e8bb2868bc4ced0257c9801b7acff43021971f

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b2bfc143d4e2aed30d92274a6e549b10e2b39f1fa142ee07363caaecbd9ce97
MD5 31d61597cec7beda46e6cf832d3da912
BLAKE2b-256 d34081b112c464c89032cb60046d978af431faa96d6f19ac824156b832424739

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 26796dc0531a0a490b36ba1d67b7bf3d74d71de1926ca6b2660f0ada35090466
MD5 5e9c0c5d5ca2d04733a315b915b37519
BLAKE2b-256 802f6e1ff29982bc3af35d2635f0102ede3c894698021eb0c042f9f455f1c983

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac00f6bbab8f5f14daf7467ffa7af0933a5ee5fa7ba9d827954b5dc7734c294e
MD5 93f0deca2088b4e45cb23d35b08c28ec
BLAKE2b-256 a865eaace7eb1daf0f776c84558cec7a37eac19f4abb0399e7903d174f824b57

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c786bb8d2fcc3a52a1bcdce0b5ee9ab16bd3488630b230cd26a67c2d2fe36440
MD5 887479811f4d36e52f554908132c623f
BLAKE2b-256 1436f8de5e561741f224a10c3eac238849d776c2c4e0ace75e8588b90a60544d

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba96cd51b3ead74529b8397a76beae91c08d89cb0dbd13724c3c469727288238
MD5 3ae1f492383dc9f8080c4f0e82054939
BLAKE2b-256 8ae61476ab97f850b352ffaa2e1b79fcb62ca3c8206d3060d69a04d9868ce67b

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyfai-2023.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 927d9d00ad1123e0a9ebaea1f8c100aef23dd46baad86ebea772b4fe7cd3e67b
MD5 149ee6083264f8a437a91924e7629b68
BLAKE2b-256 4885c5aff96d366e779227ce2b30bddb34b113298d24f80b7782a0fa5f0edeb6

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88ff16c5692a90acf523bac326808897a84c0b063e03177df10fb6aa91ea3d5a
MD5 aac57bf96b50abd65f46c3cc7b1a64ba
BLAKE2b-256 24d0c7038128bb7b197a6006e0dde26f87b7a84cda9f787cbfb00e91bf7a5572

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8cf49feefd89a1a27e65b34fde0d8f4807876ed7804abca3f276c471d8b2e73f
MD5 1e909fbc278c11b93769d0d9daa44c1b
BLAKE2b-256 4fa1d9523b46072ba78a359162f99ba5f97aa0c66e7e6a589f3261a002f4d3c3

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9e08f925828df0f610fdc78b7cbed6201e6aeb452088a04fac3dd627b797537b
MD5 e9dda1161d2806bd330b51c6098b0d68
BLAKE2b-256 9b158ad831996cc2f2c006ac62ce056c7f2c5b2c18641222917d0bf2f0550c5f

See more details on using hashes here.

File details

Details for the file pyfai-2023.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5308e893615134295ad4d2479ab456e1f27ae55cc8fe9fefc8ab402ab49ebacc
MD5 f5f31a9edf8edd9e66efe390559424e8
BLAKE2b-256 6191337ce0ee0f43a2bf2356950b227f8623ac24417b607a63c76113895d7b24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page