Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2023.8.0.tar.gz (42.1 MB view details)

Uploaded Source

Built Distributions

pyfai-2023.8.0-cp311-cp311-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2023.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2023.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2023.8.0-cp311-cp311-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2023.8.0-cp310-cp310-win_amd64.whl (18.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2023.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2023.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2023.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2023.8.0-cp310-cp310-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2023.8.0-cp310-cp310-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2023.8.0-cp39-cp39-win_amd64.whl (18.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2023.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2023.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2023.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2023.8.0-cp39-cp39-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2023.8.0-cp39-cp39-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2023.8.0-cp38-cp38-win_amd64.whl (20.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2023.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2023.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2023.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2023.8.0-cp38-cp38-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2023.8.0-cp38-cp38-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2023.8.0-cp37-cp37m-win_amd64.whl (22.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2023.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2023.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2023.8.0.tar.gz.

File metadata

  • Download URL: pyfai-2023.8.0.tar.gz
  • Upload date:
  • Size: 42.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0.tar.gz
Algorithm Hash digest
SHA256 d389e6a423e913cf69af86dbaca1a83f180ef28ec26c27449f59d47ce837557e
MD5 bb40cd29d8350c4ec52ff92e7c7cc3b5
BLAKE2b-256 bb86bbf009b2d5c9b6d14dea2cbd3316d04cd35fcac4f0aa05ff71258433dec1

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f99ef4d5c0031aee3b0d7f0967ca4dd658de45e759e6af60ef6afb19894f6fe4
MD5 2f09d11b44273cffaa68ec56ec627aa1
BLAKE2b-256 7bf9e8ec05fa04ef4cfbac736112ea5f182d941aa63c0ef427347b67e7ccf9bb

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01b6b1b7a380073164e4029cec10e0f6de0686b2eb9934c65218b719bcc64566
MD5 d0a753064d0c372a2491a47ffd3c4d11
BLAKE2b-256 ca878a9e9599e6b55365a28898cdbc6d43eae2507b1047be04cf3c46f2c4949f

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1bd439db9a294f26a1e293bcdd7427a0c11f3cb6a1cb8bbed9f027b29fa3f3e4
MD5 5d9cba86fe857e31af851f0967c19a87
BLAKE2b-256 5aa771c39805a51db7839ae92df92c925786481c22ed14582f26facb91c9e91a

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 345dd01f488a6ae6f245ed724696b1dd88d0372cbd5c025014fae34fbacd5e81
MD5 71ae1c212322c6b36c25a11162e1db8e
BLAKE2b-256 e7a615bf09a7dad6b065c157fca4214cf547cd6d5fe8a8c9b3d61e3ebf094b3a

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae87e2d949bc6c6ea8140c0a6952bd621b1316ae9adf87b24a4c5f01b5f1b09d
MD5 646ee1d3c30352bf2e1864b1de033ac7
BLAKE2b-256 33b28b36017170a61ac81d474bb53ef084ff55a35ca9e0dd94f48faedae41b8e

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44f8185813535dab1106843c1e9035a98802b327bc7ea7bd4e9f92274efa6fb2
MD5 247a6d4b74d1c481e9f449eaf8b60567
BLAKE2b-256 844e768f0675a43466bfa36a20234e30238f80f38c6ddafcb0cfcd76d00ae43e

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3abf2ba47cd7f84be01e068be369e18944217ced0400ce09eb7129acd70c765f
MD5 cdf15a408c12402a9515f93068e77926
BLAKE2b-256 727d49394865af2953faeafa307838cee6e41cf2e2378ac71466e9544b4fb213

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3858c36b53c35b877d2fb7e4be42761de4a8b5973260291e369e492b17bbb0f
MD5 d30d23f42a820249c88b010fa7ae71bf
BLAKE2b-256 c46a928518797d139f768000ddb56c31bbf1c661406bf9c71a45456a7b9b83c5

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5332cb0cfe6aaca0293a8820760c16366f9d65b83e2401f016d4354c158a7bf2
MD5 7944eaa4e533c58c677ed441b578a6c1
BLAKE2b-256 f3703261064ce4cfc5b79242cf3a46587a14ddae5b49b5d10e7e191726bb7d4e

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 7ddca93cb16dcf596c66e6beb22387283a86a9087d3d66b5d7c2b9cd5e36510f
MD5 5192864359150f7acea651e1a2c9febd
BLAKE2b-256 c3420e8bfdd1b76d4b53428d2763e635d8cb583932fe7be0922cf6ae347d851c

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5176d0225f6d2a961ff969d646132de1bfbb5eed5b0858e28193be534e8157f4
MD5 09b422dffdc484505f41a6caef7941cb
BLAKE2b-256 6cc997c4aa01a1fa6d86935134f2d11c14ebfc1f3d6c7cb6cee09836d79b71e7

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 937c71acb949e0a5b76ec68d34816503675f873542bd1afad475cfe8a151caa0
MD5 30da978add02ac7d966c61f8bcc626f5
BLAKE2b-256 087ce1ada14b9ca259e26d55b43473f53903b461200eef9ab032ef6be83cab00

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f6f893c88609ed96027e5e8892a1edc09db7f1e646ab98bddf495966dcab65ba
MD5 69225106bca44022269ffa6dcd2ce08e
BLAKE2b-256 ea6e03b18194cc3d11728480247f92224857c20b59ed2056724576d6d1fde6b0

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7fb88b73a845bd7649a61d989bd4785c7fb95b11e739c02096319dfade2eda53
MD5 d0fd721238d2c89389e9183d059df456
BLAKE2b-256 9c672b31dc35f1a76110fd3be0d78e5cb03b4de3d76da9f916b7d707b2143263

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e75b23754f54a2c078f97c7356d81e339ebedc0ef7aab5fefc7adeee51a6010
MD5 ab3662fc6dc109be4c170fdec84cf5ce
BLAKE2b-256 fec8b813d987b334b433d185e1fd318e41018eb0b2c7e873ae1090ff9e0a18d7

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 68299e4a54b76b5be5a356bf75e3fac439e5ed5c28290b02d0a02b12bd0155a9
MD5 9ba08fe4b33c20ac3245ecdc369bf4f6
BLAKE2b-256 bdb3707c2f3c6c5e9f35ec5e2c0986cd8a3df0dd7bff2af2f6f9e1ebcc2f5b80

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2a901bbbfb5e6f5e868e781171a18d6401ec76571ab27cfbf7dc1c255f8db92d
MD5 02d39074ac5450db7e4dca4a891dd2cc
BLAKE2b-256 835a24cd100813071a29de696df7da2b885fb9e33f34fb63ec6ee9af24ff5ff3

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 043b10908c01a4df7d2f36744764784b92b2b3635b477f61e4f8e222bd4113bd
MD5 78820f1e6502101701597fc6125e5778
BLAKE2b-256 7546c58cd298297c6fd10a84a01abe351f392e48580fda07b88d0105856a0647

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8d55bbb2a2b16b2631a1c098ab38aa20e03537c6c6a57bf504a68a278abc5ea9
MD5 12cd6b6dbffa7a4af3b15f907997b305
BLAKE2b-256 299700b7bf44beb8c439eee43929833e3dc9e726372b0fa55658b3bef5527c1c

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d671857ba55ea5cc3934af52124fe0942aafccf92600797598fadaff3e8b2ef
MD5 9e62e1b87c4fa98b043809d5f37e764e
BLAKE2b-256 a3ca051767733e6b6d6f402825f2d669720f286709e0044364e2e8901a93bdfe

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 adc534d75285e467c146859afbf3bdf710e19c61634e541a6e1b99876bdd0bee
MD5 f667b2e781a7c6d77b068b111fdde397
BLAKE2b-256 b76532f8654277db6c7869233ebcc11d925e8b5c4d533e70dbd9601ba7f98f68

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c88e3c34ddf853f4c7b56df5e3d95464f66ad1e3e4eda8bc816cbdcb5f3640a
MD5 61d1d501480464df2ee62450cee64349
BLAKE2b-256 68d1009f4f21336811111f52d097a49b982d40234d32e2fb89173c783ff34ac2

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ddcbf558d56db9cfafa65c353c454b083234c160b61c39f84d31b4dcf9e99dea
MD5 7f11afba7a38dd4c5393e89c0f537057
BLAKE2b-256 775eb2a5b926fefe04428621a82beac9a20906969319ecfac78c1c7f911c4dfc

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de15e4fc7714c162ab9481cbbe7af8de2b78ea2aa7d59a544f98a52bfbd95fcd
MD5 98216ed4699960eb9f81268d08a2fc29
BLAKE2b-256 2d1e6f4d74cc51f0ed71bfa123fc5259597856f75bfdbeab3b8b2f31e0e9da1e

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 669a4cbf22e10934fd16b05b068298c04098a5ee92e89ffc1f2b06cfb1f8e77c
MD5 adb9810d8017b8e9286d06f8da538257
BLAKE2b-256 f62cd6c8243333e86d6215a0ea30bb3aa197b1405d418d8ee8dfa3957e933616

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 955a0e562d6f7373f334185807fd962753e1512c9354ffecb9cdfe5d4d2c484f
MD5 619a4349a0b686ce1bdb3c5ea79dd530
BLAKE2b-256 d15a9053522c73bffeaf3955beb63780da0e2314de4ea76d31cb6bae40489b62

See more details on using hashes here.

File details

Details for the file pyfai-2023.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b749951ed8ef874442f27336fae52cfeb0b4e29b06fd8d8b14ec67e3ad8b05d6
MD5 30d8ee8ec8ae66787208db928d2003cf
BLAKE2b-256 39b71ad4b6e9f583969382969c0c769fce486e6c78fff75413d994891f1cb939

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page