Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.10 are well tested and officially supported.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (ESRF)
* Aurore Deschildre (ESRF)
* Giannis Ashiotis (ESRF)
* Zubair Nawaz (Sesame)
* Jon Wright (ESRF)
* Amund Hov (ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2023.9.0.tar.gz (54.8 MB view details)

Uploaded Source

Built Distributions

pyfai-2023.9.0-cp311-cp311-win_amd64.whl (18.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2023.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2023.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2023.9.0-cp311-cp311-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2023.9.0-cp310-cp310-win_amd64.whl (18.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2023.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2023.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2023.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2023.9.0-cp310-cp310-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2023.9.0-cp310-cp310-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2023.9.0-cp39-cp39-win_amd64.whl (18.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2023.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2023.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2023.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2023.9.0-cp39-cp39-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2023.9.0-cp39-cp39-macosx_10_9_arm64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2023.9.0-cp38-cp38-win_amd64.whl (20.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2023.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2023.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2023.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2023.9.0-cp38-cp38-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2023.9.0-cp38-cp38-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2023.9.0-cp37-cp37m-win_amd64.whl (22.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2023.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2023.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2023.9.0.tar.gz.

File metadata

  • Download URL: pyfai-2023.9.0.tar.gz
  • Upload date:
  • Size: 54.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0.tar.gz
Algorithm Hash digest
SHA256 027c24622d4c55a00f17b796b6891560f7eb6b6d92b0e3877c97f65485ec1f3b
MD5 94bb929caa78341000ba6f980b6869d4
BLAKE2b-256 72b0778645777d5c99a7670135bfad7883bb0089e73ed6db7d1bb9fe6008b9f3

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 18.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8347b1899f18ea6121f2a73b36a071a5d78663f20cb4b84457140c92e43737e6
MD5 8bcb59d10996a2b2285bb13300229cdc
BLAKE2b-256 b13690106e5e839bc62e8ec3f9319045c44c271646e204ef9ebc5553fa1768e8

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b636ee03c6cb5c1683e52cf968d72ef02afd01123dd5958a87dd737967fdb27c
MD5 730d9f4b46866dd6ac6886bda8be9f7c
BLAKE2b-256 8d8f9fc0628da207cf9174f69b0ada39f0b2b89baa3de31185c0e4c98446138a

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d503786edd5f8ec1f52c5506a053c7ddbde1602a3911cdc66420418d61382380
MD5 8783accc3db2f5716bbaf539af20050b
BLAKE2b-256 d4b425f8f6e6ee1cf984f1e5e6b477b12742cf0403819f8ee1c2db150bb44acc

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 f4be023d9a324498a7be717b520e7f23aa024252f20296dd6debc9ab70cab273
MD5 479372cd7746727714a093e20bcc188c
BLAKE2b-256 859849ff53f2c671319b737829be73b2cab826253ab91913cc109caa82e0d55d

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4364bc543685ef6ad5d9cd766a0bbe61bbb3532cd0e91d7a80f7782bac0ed86f
MD5 9a8973d1f13d0dfa150aca2d4a0c1024
BLAKE2b-256 ad693615640559a925d7703738178224fab7a37a1d04ba715cdeb852a5a7bd4f

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f9fddde9f1000b46f59558d97bc1ba3cffd82b54f26697268a19c1791a83996
MD5 b0ef4574ba754c7c941236eac9a2b332
BLAKE2b-256 bc2357478792202e3ba2ada251b96225d30ad4e7d66265958533bf57d9937b48

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7ace9231429119682ae39cbfa318f749edcc31681d895c900c1d0f2fed63cce5
MD5 3d9748b1731f003aae9ed43217d0edc7
BLAKE2b-256 49f64b3a1cdb15e52065e47795059b12c55a7244ff61bbf9b3feef5dd368a516

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f3bbb630fd06262cd629efc0ea613344ac1facb2da997c3fa7c10c9f33bfd3a
MD5 2fcbfc558cac27d9344144c79a0713ea
BLAKE2b-256 e79c916b3c9b30f5fb782892f83f9a4e91970cc8073e15f497d096a23c790ce5

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b00c8badf7c067d9506c8958e8bd6429454ff1f49a180f921d463e8eba2d2164
MD5 bd8d839c564386a0336e1100fe0490a4
BLAKE2b-256 c12ebadd1f063c7ecfa28fa73de84af2d2159b2da9dc70909ac8f1a7a0e6e1b2

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 9523105263428697f996a14ac0c25047b00f3f16118027b893f03d3be911f4a4
MD5 9c0ba1b4d44fc918a7c58a7ad5c069c4
BLAKE2b-256 f6bde968d4bf4d69117f8d271c162a1aae9c9b88aabe6e080585196fb23ef707

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 07696391c695520324cda9463bcfc430231948859d1eba067d32198ba76d0e42
MD5 04a4a4bf29fd4e6c619ff5748115c141
BLAKE2b-256 538b581a4d541a33fd724846b89633b6dbf0920096d0742719efd80ab0e50242

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 07600e46b58be1bd8ca7f1ec982d5afafe057b6be9dbec1734632ce2d5dfbe37
MD5 a7f59518decff87933f7c2a4570cd71a
BLAKE2b-256 13a93543ec5bf1905d2fb7716d190aa4932bad2c2f57f15d19a3b8bf88b4917d

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e9a0e766c9cd68644568a3944b2ff204a8817ce12cee5e4b85e9487a9709f95b
MD5 e9babbc18a61a06f2bb19b08a9c47ea9
BLAKE2b-256 461c974cd7e83b991fe1fc0bf94cb037d3a029a637dde779765ab74a61eb62f2

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 88cce44bed247baefd4bc281a97eb5b1b0972d3ed82cfc97bb2f3e07fbf49a10
MD5 8d524d099d0ebf27d75c03e84c6ec995
BLAKE2b-256 31ca421d36d9da0136e41debab1ddcc8cccd706f5ae5d524ac6fda496c205efd

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73d162df995dac0c110c87be56ee29fae3aa5411d8d9a93af6ee58cba83c7b34
MD5 5f8bbb90379e0e4e0241c4a0a0a67f0c
BLAKE2b-256 04b19a25e3a6042dc73f466706fd30acb406f724c9f3fe636533cbf92aa4f9ac

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 2475dc3f6952a1faa646db5860d980a52976241418eae87e3b5f857435cee848
MD5 568bce09d4f8c33e592f58a76dc09c15
BLAKE2b-256 543898bccbbd26a54b80b23e1c0714e3d8a70caec8093e001b0b518ae5f43a86

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 079c2abee4c08b00a27875f55997a758ad97b38c5406b2348b0302e656d4c707
MD5 76152e5ad555c62d81a781bd3f5f9569
BLAKE2b-256 1683999a7952fba2fb77a8da70ad2ee180b7d9bd5fb71f1bd7b905da546c5419

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 932c100e28d1939c371dd8849efa18b4bba7615564fb2092d263cf84dd25e03e
MD5 50b335fb139c7e4f73b70509aee02c83
BLAKE2b-256 bf21ee71a520fd3e356051573db963e0c319ba3e2ebe9d33925f550ef502e18e

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c715a9bc2ea414aad685eb64793c5b0c4358a038e39622309ce900f54ad3eba9
MD5 20c61e0761be17fc5f00cd50c2f12b7e
BLAKE2b-256 80bdb2a7ee7ed11bc4621e733cf5751e37285f7dbe55bbb446b312e02d2313fd

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c15080964cee6d4a3929ea5ebcd809e8ead16bfbb86ff61021b9385330f8d64
MD5 9ab1152791b9bb05844965898e5dd2aa
BLAKE2b-256 7a91413fd67056310fa3c2b41b4146fe7814f9bf2806fe950fd555a61bce1d3f

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65faf0b6ae430dcec1c55bf41c5d1941b9f295bfcc719302797a08ca73b4b2c9
MD5 57bf72b177680f8736cd8de9dc1b843c
BLAKE2b-256 62d4b528b1e9b2458bb762ea1fc8b27f9c24ad99ce58911df098e4510ce448a7

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b30320989a9b22405b56e54552801d70a103d549a562862c9b5b38006146ef7c
MD5 7742402c1f464954bfb40925800db25a
BLAKE2b-256 fa944c44044188669b3d61baddb54cfc9ca9a69b57d2f4a4fc3a57dda1e14a42

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2023.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 22.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2023.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13b9e87cbd233604350fa23b5b2456086c65131074bf6f05ddd0e030f87e0837
MD5 5cb72fcb286d1e1407022044dc91fc9d
BLAKE2b-256 fa9c6bfbc9ce4d81f4bc29a5189e7e38747080d8629f1ed778d7deeeba0fd629

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23eec8600d3404dfded81e21538502ee5373c2cdbff6d98aa5fccea9e2c061c9
MD5 5f36eb0dcaa6e65d41c9ce26f91bd036
BLAKE2b-256 863f95e04c2fd42e04fb9bf3056152f12d05f050170f0c2733fec4136dea3617

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ddc9015ac9063a2b5a220bdb8562bf63e172c1f0b5e409ffde3390c32ca22bd1
MD5 9a7b09c2ff835e17e6b55413cbbeeedc
BLAKE2b-256 7dece038774696052cc83c5e13c28ded226c9f2395f71f04d1436f2de3f465d8

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 047dfbd8f1bd8f88945c16048008eef4937df9f941173afd8a35c56c3cab5b4f
MD5 85cef711863f61c0791f5d6c3530b6df
BLAKE2b-256 a2aa11dc1b81cb1d83ed00720172fed903115c485b20275c9685bfaaabbfe5be

See more details on using hashes here.

File details

Details for the file pyfai-2023.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2023.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e83c987297296fc46325871a33eeb6f52fd3f731de2d6f73b568c0193920bae8
MD5 87ddb619ace523c76dcf52ef9c6038f6
BLAKE2b-256 93eb8bbc64817422adbdf14b803a44f460b5be64b871fab4a49119c9c845fb9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page