Skip to main content

Python implementation of fast azimuthal integration

Project description

pyFAI: Fast Azimuthal Integration in Python
===========================================

Main development website: https://github.com/silx-kit/pyFAI

|Github Actions| |Appveyor Status| |myBinder Launcher| |RTD docs| |Zenodo DOI|

PyFAI is an azimuthal integration library that tries to be fast (as fast as C
and even more using OpenCL and GPU).
It is based on histogramming of the 2theta/Q positions of each (center of)
pixel weighted by the intensity of each pixel, but parallel version uses a
SparseMatrix-DenseVector multiplication.
Neighboring output bins get also a contribution of pixels next to the border
thanks to pixel splitting.
Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer
rings of a reference compound.

References
----------

* The philosophy of pyFAI is described in the proceedings of SRI2012: https://doi.org/10.1088/1742-6596/425/20/202012
* Implementation in parallel is described in the proceedings of EPDIC13: https://doi.org/10.1017/S0885715613000924
* Benchmarks and optimization procedure is described in the proceedings of EuroSciPy2014: https://doi.org/10.48550/arXiv.1412.6367
* Calibration procedures are described in J. Synch. Radiation 2020: https://doi.org/10.1107/S1600577520000776

Installation
------------

With PIP
........

As most Python packages, pyFAI is available via PIP::

pip install pyFAI[gui]

It is advised to run this in a vitural environment.
Provide the *--user* to perform an installation local to your user (not recommended).
Under UNIX, you may have to run the command via *sudo* to gain root access an
perform a system wide installation (neither recommended).


With conda
..........

pyFAI is also available via conda::

conda install pyfai -c conda-forge

To install conda please see either `conda <https://conda.io/docs/install/quick.html>`_ or `Anaconda <https://www.continuum.io/downloads>`_.

From source code
................

The latest release of pyFAI can be downloaded from
`Github <https://github.com/silx-kit/pyFAI/archive/main.zip>`_.
Presently the source code has been distributed as a zip package.
Download it one and unpack it::

unzip pyFAI-main.zip

As developement is also done on Github,
`development branch is also available <https://github.com/silx-kit/pyFAI/archive/main.zip>`_

All files are unpacked into the directory pyFAI-main::

cd pyFAI-main

Build it & test it::

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet.
Depending on your network connection and your local network configuration,
you may have to setup a proxy configuration like this (no more needed at ESRF)::

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it::

pip install --upgrade .

The newest development version can also be obtained by checking out from the git
repository::

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install --upgrade .

If you want pyFAI to make use of your graphic card, please install
`pyopencl <http://mathema.tician.de/software/pyopencl>`_

Documentation
-------------

Documentation can be build using this command and Sphinx (installed on your computer)::

pip install -r requirements.txt
python3 build-doc.py


Dependencies
------------

Python 3.7, ... 3.11 are well tested and officially supported.
For python 3.12, it requires silx version 2 which is still unreleased for now.
For full functionality of pyFAI the following modules need to be installed.

* ``numpy`` - http://www.numpy.org
* ``scipy`` - http://www.scipy.org
* ``matplotlib`` - http://matplotlib.sourceforge.net/
* ``fabio`` - http://sourceforge.net/projects/fable/files/fabio/
* ``h5py`` - http://www.h5py.org/
* ``pyopencl`` - http://mathema.tician.de/software/pyopencl/
* ``pyqt5`` - http://www.riverbankcomputing.co.uk/software/pyqt/intro
* ``silx`` - http://www.silx.org
* ``numexpr`` - https://github.com/pydata/numexpr

Those dependencies can simply be installed by::

pip install -r requirements.txt


Ubuntu and Debian-like Linux distributions
------------------------------------------

To use pyFAI on Ubuntu/Debian the needed python modules
can be installed either through the Synaptic Package Manager
(found in System -> Administration)
or using apt-get on from the command line in a terminal::

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

* ``python3-numpy``
* ``python3-scipy``
* ``python3-matplotlib``
* ``python3-dev``
* ``python3-fabio``
* ``python3-pyopencl``
* ``python3-pyqt5``
* ``python3-silx``
* ``python3-numexpr``

using apt-get these can be installed as::

sudo apt-get build-dep pyfai

MacOSX
------

One needs to install `Python` (>=3.7) and `Xcode` prior to start installing pyFAI.
The compiled extension will use only one core due to the limitation of the compiler.
OpenCL is hence greately adviced on Apple systems.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt


Windows
-------

Under Windows, one needs to install `Python` (>=3.7) and the Visual Studio C++ compiler.
Then install the missing dependencies with `pip`::

pip install -r requirements.txt

Getting help
------------

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it.
One needs to subscribe by sending an email to sympa@esrf.fr with a subject "subscribe pyfai".


Maintainers
-----------

* Jérôme Kieffer (ESRF)

Contributors
------------

* Edgar Gutierrez Fernandez (ESRF)
* Valentin Valls (ESRF)
* Frédéric-Emmanuel Picca (Soleil)
* Thomas Vincent (ESRF)
* Dimitris Karkoulis (Formerly ESRF)
* Aurore Deschildre (Formerly ESRF)
* Giannis Ashiotis (Formerly ESRF)
* Zubair Nawaz (Formerly Sesame)
* Jon Wright (ESRF)
* Amund Hov (Formerly ESRF)
* Dodogerstlin @github
* Gunthard Benecke (Desy)
* Gero Flucke (Desy)

Indirect contributors (ideas...)
--------------------------------

* Peter Boesecke
* Manuel Sánchez del Río
* Vicente Armando Solé
* Brian Pauw
* Veijo Honkimaki

.. |Github Actions| image:: https://github.com/silx-kit/pyFAI/actions/workflows/python-package.yml/badge.svg
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/github/silx-kit/pyfai?svg=true
:target: https://ci.appveyor.com/project/ESRF/pyfai
.. |myBinder Launcher| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/silx-kit/pyFAI/main?filepath=binder%2Findex.ipynb
.. |RTD docs| image:: https://readthedocs.org/projects/pyFAI/badge/?version=main
:alt: Documentation Status
:scale: 100%
:target: https://pyfai.readthedocs.io/en/main/?badge=main
.. |Zenodo DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.832896.svg
:target: https://doi.org/10.5281/zenodo.832896

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2024.1.0.tar.gz (55.0 MB view details)

Uploaded Source

Built Distributions

pyfai-2024.1.0-cp312-cp312-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyfai-2024.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp312-cp312-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyfai-2024.1.0-cp312-cp312-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyfai-2024.1.0-cp311-cp311-win_amd64.whl (5.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2024.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2024.1.0-cp311-cp311-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyfai-2024.1.0-cp311-cp311-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfai-2024.1.0-cp311-cp311-macosx_10_9_arm64.whl (5.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ ARM64

pyfai-2024.1.0-cp310-cp310-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2024.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2024.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pyfai-2024.1.0-cp310-cp310-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyfai-2024.1.0-cp310-cp310-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2024.1.0-cp310-cp310-macosx_10_9_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ ARM64

pyfai-2024.1.0-cp39-cp39-win_amd64.whl (5.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2024.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2024.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfai-2024.1.0-cp39-cp39-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyfai-2024.1.0-cp39-cp39-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2024.1.0-cp39-cp39-macosx_10_9_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ ARM64

pyfai-2024.1.0-cp38-cp38-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2024.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2024.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfai-2024.1.0-cp38-cp38-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2024.1.0-cp38-cp38-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2024.1.0-cp37-cp37m-win_amd64.whl (6.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2024.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfai-2024.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2024.1.0.tar.gz.

File metadata

  • Download URL: pyfai-2024.1.0.tar.gz
  • Upload date:
  • Size: 55.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2024.1.0.tar.gz
Algorithm Hash digest
SHA256 1ebd3ef1548e86b66104a989f945703cf89d549a22187321b893a1afa0290da9
MD5 bea58e88ff9107884d9f3b748d393dfb
BLAKE2b-256 2f2279d387d0bd36d302b2cb660bc83f5fed18529823e2f66a02f7aa1904638e

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f6e6805d1d8bb0fa34678a14ba656ff40965e92be3fab6747b1ed54bcb645741
MD5 989bafca02dc4456da0f249ec3faf3fb
BLAKE2b-256 a4f13b745c69a0dcc1f935b9117da5da31ea36b1f8ae746793ad2be56229cf68

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c8ca3f0fec68350883e3b895d92460f538ba3a22a18477badd415fdeabb19fd
MD5 6c7f8b3f1a12ee67c401c37bc97257b5
BLAKE2b-256 69932105404aa05e60f7a4ea9846fd457d9e25d78971939d0dc7ccfad4086f89

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca7df6877a2ef1a3ce62ff02048ad325c3693c184dc398c97edf734379604643
MD5 fe75fe520cb81cca1781908dbe5f380e
BLAKE2b-256 970544ccd9e4eabea2f5ea5c8f6393d9669a01fa96bf53515a25aa4dbaff415a

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ba2865b886285fede2ef39fecb428de5c935687615a2a8e12c63c31efea9db5
MD5 431281e1c234f59f19f4b1da09fca0ac
BLAKE2b-256 5f8786db287952a56d277a6af129d0f417af159dd448f6549079238e0610d017

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e218ce98597f500f3e541e48695fa92dfb0c0c967a6c2d233cd611fd5df912b1
MD5 9407150367e58e87da485a79d4ad3bdc
BLAKE2b-256 256ee14e1225c7deffef6d2c94d1979b8b54bdbc914ebdd9cefa486470ff9c3f

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9328ba918a9d0143709af5082b649fa099e788caede4b43064bfeee6adf6421
MD5 fe82f5b013af5ea259f62cbfdeb3211b
BLAKE2b-256 927bc20ff9d02d20962453cb519573f6858c712e1d42796c5ca871d1d426ed98

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9bf3aedf1cdad1ca2235f7d9a1cd0fc90c772f0910ec77cef5201e7080e4bf73
MD5 24a8ae192f78795b1ac370db9199ed04
BLAKE2b-256 ce80ed4a0ccfc34604ccc6510630d8f1c34f40a511269b1dfcd2fec253932c5a

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e94d1d46e80eb20ae6e88d57a29a810778a930d9fde329d7810f50d304176f23
MD5 b1d0aedb9d8ca9507b7a74f97e7ea520
BLAKE2b-256 a771c8255b06b651df97473483c6a52398e0c5467dc9c549ed7a83bb9e6e0b00

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a57b44703e2d57c59ad29bcb16adddbb1355af7e3b4dcfc5f5a5becfbb79f43b
MD5 2a0eb1db4dcb46b59cf3282d4303ca80
BLAKE2b-256 d2f40cef1a0566cd1363140f2c84f267e04a28b48cb817f1f0f560a88b315c4b

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp311-cp311-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp311-cp311-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 fd1db96520b0e6ac0a6c6b9498d734e0dbc8af1c5fd3ec75e3ff2d32dc7d9eb6
MD5 01d5f47a21eb2a87e5e4b551382e964d
BLAKE2b-256 d49811aef0ab3f019fd76ef637a5025d27dafa0764dfc4b74d78ef02bcb38bed

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 62f6dc9bb50202a652dfc2b0021a78fb359ae34ed6dfc7c2f9b52c412715538c
MD5 a132142725028c0b26424026e59f56f4
BLAKE2b-256 04a276fd544d3bfc689289a542dcc31c97b02a7d38cf16c2fb43003cbe0c4414

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec5aa3392ceb060629504c7ec1f4994c5ed7b295eedd8bd6e5c299657154d630
MD5 c762edb387e8da7b981c7d12099ca805
BLAKE2b-256 9cbe18a104b7e5fc852b927c4f059ea70e0f8567c49c8602e7fb21bab6da12b1

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c020bc9225cb884d5ad9961eeb11d93bc4136444393d45d19de83368ce03f786
MD5 f95a3f8ef5f395f4f8a870784dde5476
BLAKE2b-256 e79b71d2cefc16231d70cea5009f996cb6f572ab79fc1efe8a501424cc5c26fa

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d546bf71c78e0f5fabb99f938aa2f31f2a2de4dc297112b3940b5669e4c1a809
MD5 ff85c93fafac539f4202416beabad62e
BLAKE2b-256 c9017a536d3b642945f3cac993535a3c6c7dce15a4f945a298627fdf07752b42

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1eb2f9198103bbd8b44cafde6629aa156e431583fa174aec6de9db7fa5a286c0
MD5 ad3428ab58ca3dfeb1ffbab86315ede4
BLAKE2b-256 689a51637edfac70b0b873fe6746a8d84c1e17221ed92d9cdc34f55887e169e5

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 131b9cedf145eb8059ee640b7a77b205ea149f9fced7542185ba610b1f397817
MD5 72a1d3ee970b0b1f9485fa7b032600b0
BLAKE2b-256 4bc3fb0199447a46bd5d94a75ca1c75dc3211a7c2d833ac4056bc55584b320ed

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp310-cp310-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp310-cp310-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 1b39a3556b9fff709dd9742172fccc71e632c80072aa17e8c7ca80047bdc7b13
MD5 7f53166969451349f523a8b5b30c33ca
BLAKE2b-256 32649c517b2d00157eca461d3f46ae0d0abdad990ac66e856b5b8821715a47e9

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4641f164497e85b699871f9c92d6aab5542f5819960fa64595879d134adab5ff
MD5 aaaae306c528d1390fd926c57586f214
BLAKE2b-256 8b35445d568062824ac210138c020ca2cfd9e50783ec0348239bb2aa058f27eb

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 735f5554a25f8bdf30b466379785ec6e4e787e5a2762526adb1d2fc31dce7e57
MD5 1288df50a74e5b09f6eedd866ee2bf24
BLAKE2b-256 d6dc2e9a980a976e9e5111af601ebb9d23acd9607e65a0cfd913d281c7ebcefc

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ceb6b9f5c5bd60668d30ac41e7ac96de945d89a12265d10f203bd160a0aecac0
MD5 0c87b6061111a0ad159551fb96c3446d
BLAKE2b-256 916b29894bdcb75ed5f8ad0441f0a3bcd1b23ca1dea9fe1037c3848792f7072c

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9e12b7f77f5ef3bb25d8aa7e862e005f1e94765b2fed27479b866968b8db9ed6
MD5 68f49dbd57d27e2b743ab041ec696d28
BLAKE2b-256 4a13fd0babfeba9ed587474bc760195cb257d4d49637c8071635d81c3464bf51

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d04c90142f328078844aa139aa5bb31a64eea3ce1dd121df10a0ab7a33cc930
MD5 b5002112b5461cf3f2a10852a4124a18
BLAKE2b-256 3550b975f82aba5bfe050bb6827fcbaad5a1b9ae6eea9b3078dd1e6ab5cff7d0

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e46b11db33e782339f16c044ebbc8f583a531f588a4b30dace7e6c85d474676
MD5 4cf9b82cafab8381bc2b2aa9e64d5354
BLAKE2b-256 f54f388daacbb53fd08c01db42e23b51808b41f081a2b448b42026c501830b6a

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp39-cp39-macosx_10_9_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp39-cp39-macosx_10_9_arm64.whl
Algorithm Hash digest
SHA256 aed0623d578eed5709e467aa6c1237a7e30e8c1fa310c943f9320951dbb11efa
MD5 bc7cca397edd553f2c8aaef74937328b
BLAKE2b-256 7536c4eadc5590277dd4b290979b097a0830589bbc8028f49188b14714abbf82

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ae78b5f54db2546586f8d7709b8f5ba1c012702e2dd351e468fd903965cca93
MD5 2e6805bb4224e51ed9b6713085580cc9
BLAKE2b-256 8db817480928cc6e96c72368f181d85498ea456ddec2a6a9173326f998cea643

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 085d5b98f518315acf222348c043e94e5406427e137cd12e4a6574b419b86e37
MD5 6a6af842861aca7c7560cd17e5699889
BLAKE2b-256 a62835e8ec0e2b50df78ec83dd875a611f77a884127786cf918dfbdeee5546a5

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1265a31f9b7b5236c6458ee772f482a6b114094c810abb6de717c5ec86911968
MD5 f3440db77fe9702807c7afefbe0ddbe4
BLAKE2b-256 9089de02b0dcc94f3ee4f57467495a14531973d08c579227304213bcaf2e9f19

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7535ae3212fe2e467775aee2c51a7e77b3765aa9ddc3a76ffab9604bc004c220
MD5 58ad5a8c251df655db46e83673c141dd
BLAKE2b-256 21e537e245a6feeb52fabc18d5e0fc1993c04220d678b7c1382a8cbe8b43f55c

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51b2ceb2a7af871e71da162c8c18a30f0d5075e62bde2fba3be2dc758ca23991
MD5 42683c7125b7fc9b436a5fb2c8511aa9
BLAKE2b-256 2bf68811f33df89463d1ff05ccc49af381096f837385b1a7c7053b31d3886dc8

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 949beb92e0f236d8caa35eeb44502e831298c756e288f876748ab8aa04e20e2b
MD5 b7e992b1c7a832cbce2cd36488a6d6c5
BLAKE2b-256 94e9983c6e361fc7624b571de139d382ca53ffb3e3e656173653eab79e368d0a

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyfai-2024.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cfa6e057748f192d7097c07b41c4f06a3bc9554f0ca8557fc4cb97f0b70ccfb0
MD5 7d880c6665dc2fb8b44c4de59180e5f2
BLAKE2b-256 9f5f95b1bf759f19d0101692fb7b31c83567f6a116c9e84dd4c717f043314ad1

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 606ee4b6ec12e12b342e76c21fcc8a0204b38a8f41d05a1dc82a9dc1c64d9065
MD5 1d131f50001fd92e1f42c288657f8932
BLAKE2b-256 78b7977757bd5ea5aacc73dddf2aeb5fd80d2ca7ec3dbba4c94376c3140baf8b

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 44d2a8ccfe59ea4d0df91921055c53224163cc7f17ba3ee96590798a0a85dac2
MD5 ebd174f53820477cfdd55a0964073eed
BLAKE2b-256 166ecc216fa19af959d1b00e93e66c188329a5c8da2fdda6246d7697f5e7469f

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4581bf63dc68744da3eaa1edc37a76c8be3cb9a9c9aaab6aa33e0eeb7fded562
MD5 91bb21b823cf3f26d845d3c1d04c3097
BLAKE2b-256 b3eb13d4447cce4c5411abf644a5957d68c392fa7e824edeee8e326e1bd59848

See more details on using hashes here.

File details

Details for the file pyfai-2024.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87e0c3bdd2b7747655f76934bd98a1478753135b51994306e1e4d640cd3229d4
MD5 7bddf0bc0e30172fc632873c31454ab5
BLAKE2b-256 2359ab91b0e7ebf36462fc066a3e4b50973ec66c75eb0279a9c5fcd5b897cbec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page