Skip to main content

Python implementation of fast azimuthal integration

Project description

Main development website: https://github.com/silx-kit/pyFAI

Github Actions Appveyor Status myBinder Launcher Zenodo DOI RTD docs

PyFAI is an azimuthal integration library that tries to be fast (as fast as C and even more using OpenCL and GPU). It is based on histogramming of the 2theta/Q positions of each (center of) pixel weighted by the intensity of each pixel, but parallel version uses a SparseMatrix-DenseVector multiplication. Neighboring output bins get also a contribution of pixels next to the border thanks to pixel splitting. Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer rings of a reference compound.

References

Installation

With PIP

As most Python packages, pyFAI is available via PIP:

pip install pyFAI[gui]

It is advised to run this in a vitural environment . Provide the –user option to perform an installation local to your user-space (not recommended). Under UNIX, you may have to run the command via sudo to gain root access and perform a system wide installation (which is neither recommended).

With conda

pyFAI is also available via conda:

conda install pyfai -c conda-forge

To install conda please see either conda or Anaconda.

From source code

The current development version of pyFAI can be downloaded from Github. Presently the source code has been distributed as a zip package. Download it one and unpack it:

unzip pyFAI-main.zip

All files are unpacked into the directory pyFAI-main:

cd pyFAI-main

Install dependencies:

pip install -r requirements.txt

Build it & test it:

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet. Depending on your network connection and your local network configuration, you may have to setup a proxy configuration like this (not needed at ESRF):

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it:

pip install .

The newest development version can also be obtained by checking out from the git repository:

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install .

If you want pyFAI to make use of your graphic card, please install pyopencl

Documentation

Documentation can be build using this command and Sphinx (installed on your computer):

python3 build-doc.py

Dependencies

Python 3.7, … 3.12 are well tested and officially supported. For full functionality of pyFAI the following modules need to be installed.

Those dependencies can simply be installed by:

pip install -r requirements.txt

Ubuntu and Debian-like Linux distributions

To use pyFAI on Ubuntu/Debian the needed python modules can be installed either through the Synaptic Package Manager (found in System -> Administration) or using apt-get on from the command line in a terminal:

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

  • python3-numpy

  • python3-scipy

  • python3-matplotlib

  • python3-dev

  • python3-fabio

  • python3-pyopencl

  • python3-pyqt5

  • python3-silx

  • python3-numexpr

using apt-get these can be installed as:

sudo apt-get build-dep pyfai

MacOSX

One needs to manually install a recent version of Python (>=3.7) prior to installing pyFAI. Apple provides only an outdated version of Python 2.7 which is now incomatible. If you want to build pyFAI from sources, you will also need Xcode which is available from the Apple store. The compiled extension will use only one core due to the limitation of the compiler. OpenCL is hence greately adviced on Apple systems. Then install the missing dependencies with pip:

pip install -r requirements.txt

Windows

Under Windows, one needs to install Python (>=3.7) prior to pyFAI. The Visual Studio C++ compiler is also needed when building from sources. Then install the missing dependencies with pip:

pip install  -r requirements.txt

Getting help

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it. One needs to subscribe by sending an email to sympa@esrf.fr with a subject “subscribe pyfai”.

Maintainers

  • Jérôme Kieffer (ESRF)

  • Edgar Gutierrez Fernandez (ESRF)

  • Maciej Jankowski (ESRF)

Contributors

  • Valentin Valls (ESRF)

  • Frédéric-Emmanuel Picca (Soleil)

  • Thomas Vincent (ESRF)

  • Dimitris Karkoulis (Formerly ESRF)

  • Aurore Deschildre (Formerly ESRF)

  • Giannis Ashiotis (Formerly ESRF)

  • Zubair Nawaz (Formerly Sesame)

  • Jon Wright (ESRF)

  • Amund Hov (Formerly ESRF)

  • Dodogerstlin @github

  • Gunthard Benecke (Desy)

  • Gero Flucke (Desy)

Indirect contributors (ideas…)

  • Peter Boesecke

  • Manuel Sánchez del Río

  • Vicente Armando Solé

  • Brian Pauw

  • Veijo Honkimaki

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2024.5.0.tar.gz (57.8 MB view details)

Uploaded Source

Built Distributions

pyfai-2024.5.0-cp312-cp312-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyfai-2024.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp312-cp312-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyfai-2024.5.0-cp312-cp312-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyfai-2024.5.0-cp311-cp311-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2024.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp311-cp311-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyfai-2024.5.0-cp311-cp311-macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfai-2024.5.0-cp310-cp310-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2024.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp310-cp310-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyfai-2024.5.0-cp310-cp310-macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2024.5.0-cp39-cp39-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2024.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp39-cp39-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyfai-2024.5.0-cp39-cp39-macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2024.5.0-cp38-cp38-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2024.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp38-cp38-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2024.5.0-cp38-cp38-macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2024.5.0-cp37-cp37m-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyfai-2024.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2024.5.0.tar.gz.

File metadata

  • Download URL: pyfai-2024.5.0.tar.gz
  • Upload date:
  • Size: 57.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0.tar.gz
Algorithm Hash digest
SHA256 c75e0c7093e2f35eb9281671f45d36835b1393b8ca7a00511345219cd68fdb65
MD5 4c65606239c421a5352e12d7af9ed4b7
BLAKE2b-256 ca9a3549212a01917617372e4cc4cbf67aa27c7b072d7710dcb078044ec91f3d

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5f7f5120cd423c7bebb9de1933f01184f95c8a541f156f83b57e85d40b414dfd
MD5 f624b1740ec4e311821bb0d17ad04ad6
BLAKE2b-256 b0364ef3a6ede7129d6a9aa0877b70b0751b1494bf133b046e1cb8cccbafec88

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8e46c292b7e1a22ee4a5a5db936b7e19147011765673a3da8ba6dbee56964ef
MD5 4f03b7c14dc22b5753463af4f1eafa08
BLAKE2b-256 ad61355b44e847cbfbc029cb3e5d428fecd121b49ffad1a531f4b24ccec0075b

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5724ac2f943c2b1c9597626475de4f5b5479e2d78b9876b521e6c933591b31ce
MD5 84f0be50a0a840cb0237283121dc9842
BLAKE2b-256 550fc92fa26b296e35639a366c9fc49b3f0eb08b9c40e558b666f6c8f8be956b

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8217c352829e98fdb620b53d83a72edf217d7f9d14b0d50f760654c0e1109321
MD5 cf44ded634c967cab2c0e71d75e0a3b9
BLAKE2b-256 1feb485faa893e9740acff9a87007a909f7833a0b55b7c36ae87113d04cbcc6f

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88e3a2d5174c7f286f15c285bd87708576060f2ebb5534a6a2a708cf1caf3b94
MD5 459d708ff0b9c7f6dbf5567f00025cd9
BLAKE2b-256 7d0ea62e1f1f0ee26155defe481de9c37d72c63313e06db62aacdf455f96410b

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8f90e0f24ed444e75edac36ba82d70966af5934800010a4c2a47df61039a105
MD5 bbf3af8694e214c209c6c08e588242f3
BLAKE2b-256 4e2ce7381372e748bbe0e2fb7f393e0d0e2e0b54b2e099669d72142b070dd287

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6169e23c8dc8462a51b38d7736554d8642ab44022137fc61c5625ea67f32b03d
MD5 46b8c2d0c57a59ff227ce32dea0fd576
BLAKE2b-256 ec1653ec47c815ced5e557d022cd4b850a5b3e16108de2756757c197dc9ee60a

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 207b5b344a953b72720dd91e645d9dda698f85db5f31229962971806043edd59
MD5 5e26477fa9232e33c2d0af9aeb7be38a
BLAKE2b-256 9261d2fde6652498ed9f9aced58b7222c60a931e25e2cdc853d14e82ae14c0cf

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0609b242c649a5e4a7caed3a6ed266225eb3a376146f24677263a856458a1638
MD5 a6febf73103b4b78b68ddcb1969972f1
BLAKE2b-256 7fb747093c26526be868dd4e083a7c4bb8c22bfd7c7277644ef2c935c8731848

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2805b7592cd99e90e8dbb952346475bbef134e47b6c18e6fb8b99bb7aaeb3789
MD5 b15888346eccbf37596132177a086836
BLAKE2b-256 7bf85f546608cc33e955718c936768ae47edc641f78d8b0c2c46c36efc474e17

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1b8c73d9014b1e0dc7e50dca1eeef2bf57ab48a2afb1d1fc03b6260d94218c6
MD5 58c9ea71d5df5bdebd573243f4a099d5
BLAKE2b-256 09b642af50300787d71ae3bb0c15d1538e84f845b2fab6bae0bb83aa61430954

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3506d30f6581d11260b77af3d2b481924e72618175a04e4ecb9fa9067ba6cf77
MD5 438191c1ac2ff499d95a2702e75e6dfd
BLAKE2b-256 6b356ef69bde0e45ce095bd00dd4da1e0caf8e01ee0f223080906336ffb5823c

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aecbd64880c454c27c748dc748b2a9f37e1464cc574d9cc998866496fc4108fc
MD5 cff274ed4f83a08ba0dea0c26b83b36d
BLAKE2b-256 089880a2842b97e4f25fdce16d249d99d9c28841f5d75916f3dec540eddc7dae

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2866890f05599a91a9f04b8369c2248d0431dd57011f82db5b9eb63cefadcc8
MD5 2fb3c4ea9b35fd55ff515fe5e602d763
BLAKE2b-256 cae8e254f21603d2875310a98416cb3104e740687b11d221392c19c3cb5079df

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9d58a8233edcb3229107a52bad110106f9d17cd89eed49497949ea2ce00c4ac3
MD5 ca48cb87743aeb6f995c25af3fa22e00
BLAKE2b-256 11cbaa52b666bf04c62e704d7be8d612909c9a6f7468e0084ca7e68999719862

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0448415842cb50c59f60eab2d7ec09a215fe10e21b7b0af41290c4e6997347d4
MD5 c4220b424102b1df5991bd081fd166f3
BLAKE2b-256 4840867c13f8a72dd345a1997e5438544fba6aa495739f5f16a2a23200411ec2

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd9d4b7029185f56e5164bd03ffdab5bbc6830c18b57556ab4252f9117452e46
MD5 aa1d0b17011a5c401a1d457fcad7f18a
BLAKE2b-256 c3c0d21243c9026954cefe7ba7c1059c237e511f2c30141f16a37df0e4ef6f69

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 632c154715d49494ce85353a298d1f877adbd10e646faa372fcfdc079f9441d7
MD5 9363560d68220a511b6c77e77f6f8e5c
BLAKE2b-256 6d0576043cc8f2f381dcb978bb6a47dd3c9f1d50506ce8e23eae8e81dddf2bf8

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e82cdd5a4a60b672ba956f6dce43bab4742eaca46be86146c8ddd9191ed9259b
MD5 96ccc508ef8783d15c1a6de275ebfe32
BLAKE2b-256 1b631f222fdb9de96b3347f34af1c6f441e6d4343ec853a444c5223cbeaeaf82

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34235cd8655c7cf65c77a322a5b3ba25af09fce42179c24f382132b5aca4dcc7
MD5 657a40688b6c163414e868e8f2e42ca7
BLAKE2b-256 819d5dfa7531a2061b9dbdd9bdff32ca9421b647b3952d18364b4d976b6c9775

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f478f1ab0e5f8b93c8f9e8db35d6b96cb726fa8bf42c43986cb7ef265c20159e
MD5 86a64d52f7550af74b2b765f5f26b5ff
BLAKE2b-256 bc71d5e0c9269f97cbd01b35ba8881b6ef4c7e22c23576ecd665d71cefab362a

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a95ca4cd89cccb89fa62d3fd2c88e58c6d527e9f8d7474e01736ba03aecfe283
MD5 1478a5f9f362f3af00b40d594286690d
BLAKE2b-256 59856d0a66d3022a0f53e823032423e2e06b23cb490b7b4219f3577d04e28a92

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 516e41c504f5afb4756efce9ccd6bbd23c1fc5f38d6a98857e463f37b0c4dc14
MD5 abb50ea45ce35c3cfa23c6c1907550f5
BLAKE2b-256 0946a7378c0f76be0380c7763c221c986234e360a04d225559e043600f40fe46

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b72c4dc78a8d74af2a922313ba5dd3b4c14eb0ce9a640f6a7bc518e6f9f8896
MD5 6d6215696f15b81e109a57147e7cfd5b
BLAKE2b-256 ad8c9b96df1c9ff28bd68cb6a8d6b36c303a4730b115cc2213cb79b410fd0484

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3f8b7938b2efbee16a2de3eed271ce42a3ffd2785052daf4d3445a9e986e07c2
MD5 6322805b9d27308dca17ce61d07197db
BLAKE2b-256 57fcd55bb0a3b7b49b6d0c2b8e02823b8e58d149a5fdedb49d8e722bc36813d9

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfdaabf146de5968a9aefc8d2d9338b811f8683d630c1f427403fe1953528d62
MD5 d39b717b4facf9d09bda30c9b860684c
BLAKE2b-256 23e8e23cb86b41b75c3d0e7b1bdd92b59344c16c74b62c40beb97d52213ff884

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c4956a44431749db5e880ae8634e82cd2a2d49a4c381c641b7abe3a5eccf8ab3
MD5 ca7f5cfc51e66fc635d3f78d980564a4
BLAKE2b-256 1c1e5db4aac36fe2a387638f3c86c417eadae91a3bd859a3fe57ef3093ef34d3

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b797319b32a9b69741f73f21b79d708cf61f83bd768b4d1763d236b8230c09a
MD5 cf0803bbb0b31c1c8f475766b0502fd3
BLAKE2b-256 8745526cfc15facff93965d06a644278ee52ddc650447e6202643671ce69237d

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56958b179157098c98e2efdc35fd0f2aaf39be397b7f285c39b33466f54125db
MD5 be27ab151e65ca8ba53a8491b9e567d0
BLAKE2b-256 c1bea1fa9803b16cdd30fb1d6685dccbf11de47a63cd533b5dfba6d1981e46cb

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09dc7b63ec5e887b81ec6fdbba3fcc67b234b1ff05ead074a4fdee998e6a0d3f
MD5 4142e4519aedda1ae005789dffd9470a
BLAKE2b-256 5e4005046096a77efe13f8c9760cd7498b72eb2f7a8afa2cd421a53072589fc4

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pyfai-2024.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 25107f7dce4865395f7f968c4e044ef3da5f00283bc20ca43815af95ad07b4d0
MD5 64af3d09f795feb2f77edfaab3271e81
BLAKE2b-256 a3ca663b94d71660ca256d59bc143b52d524afb89fd3ac73d3f42ded48e9b997

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 925c6b338624e28640c726becbce66cd8bcc475a508c6f1c1d92071da2e999d7
MD5 5713af4d58dda445a804cf328150b92d
BLAKE2b-256 a014952afd726d721ebe97aee18c439da1981cf49167645c220ce8471a1052b8

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3b9af4e05adb0c79737cc22e44a767d437666eca7de3030594d3fc245b820b2d
MD5 6e22f9855a483cac64c3b314cf824d7b
BLAKE2b-256 b347d250a2ec09b448f83782d35e9bdd31ccc645726934a78492a9c95bc3a709

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6fcf61ea205ce470166d4f11cad9dc736dff3814eb43bfe8f5ce0d102d39990
MD5 cbff13170bab769b0e7d1eee72994674
BLAKE2b-256 dd2ce1a724092ee039adf07f5a472b27da0f5ced00628651e0f1d530fa5d8fc0

See more details on using hashes here.

File details

Details for the file pyfai-2024.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4844a2c1c9fb35251028f8d6c363eb8aa878ea9fdd4680816a891e40c0538497
MD5 04684f4091655d3251aee8a441a24974
BLAKE2b-256 fa88c00a0f5e52b52119410b5efdc391288eef0b4ba5cc19f62a7be11f530a2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page