easy Face Recognition for python
Project description
Author:KuoYuan Li
本程式簡單地結合dlib,opencv
讓不懂機器學習的朋友可以軟簡單地操作人臉辨識,
程式需另外安裝 dlib
搜尋關鍵字:whl dlib cp*** ***代表python版本 ex:cp310代表 python 3.10
dlib whl 安裝包下載網站: (https://github.com/datamagic2020/Install-dlib)
- 本套工具主要針對windows使用者設計,相依之 package 及相容性問題需自行排除
- dlib whl 安裝包下載後必需由檔案離線安裝 pip install ...
- opencv whl 下載點:請下載合適的opencv版本
(https://pypi.tuna.tsinghua.edu.cn/simple/opencv-contrib-python/)
※PS:
2022/11/24 使用 python3.10 搭配
dlib-19.22.99-cp310-cp310-win_amd64.whl
試用成功 2023/4/2 - 調整函式,適配 colab
(https://colab.research.google.com/drive/1ou7nWLQGl8uYLR_jUDyush9-D8ToTe8P?usp=sharing) - 移除不常用之影像檔處理函式
- 新增直接和 opencv 協作模式
work with opencv webcam process
import pyFaceTrace as ft
import cv2
ft.loadDB()
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
while(True):
ret, img = cap.read()
if not ret:continue
#img=cv2.flip(img,1)
tags,dists,rects,img = ft.predictImage(img)
cv2.imshow('press esc to exit...', img)
if cv2.waitKey(10) == 27: break
cap.release()
cv2.destroyAllWindows()
Download the samples to 'train' folder(下載各種照片樣本至train資料夾)
import pyFaceTrace as ft
ft.downloadImageSamples()
Demo with webcam
import pyFaceTrace as ft
ft.loadDB(folder='train')
ft.predictCam()
比對目前webcam擷取到的人臉和指定影像檔案並計算它們之間的距離
import pyFaceTrace as ft
im = ft.captureImageFromCam()
VTest = ft.getFeatureVector(im)
Vtrain = ft.loadFeatureFromPic('train\\李國源.jpg')
D=ft.dist(VTest,Vtrain)
print('距離=',D)
載入train資料夾中所有jpg檔之特徵及tag並直接預測目前webcam擷取到的人臉對應的TAG
import pyFaceTrace as ft
ft.loadDB(folder='train')
im = ft.captureImageFromCam()
VTest = ft.getFeatureVector(im)
result = ft.predictFromDB(VTest)
print(result)
License
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyFaceTrace-5.0.0.tar.gz
(8.2 kB
view details)
File details
Details for the file pyFaceTrace-5.0.0.tar.gz
.
File metadata
- Download URL: pyFaceTrace-5.0.0.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a677e62115a623e7d7cfbab0d5e27901972c12eb604c5f66dcf1ce262ad727bb |
|
MD5 | 6e2005186fab81f36f032347e23482c2 |
|
BLAKE2b-256 | 8adb8383bb7c8e8efd50ed379b679962892e1426de8f26890af21224334f53a3 |