H2O MOJO wrapper - allows predictions from python without the webserver overhead.
Project description
pyH2oMojo
Unofficial Python wrapper for H2o MOJO's
A lightweight python wrapper around an H2o EasyPredictModelWrapper instance
Instantiating the object will launch the bundled Jar file, and establish a port on localhost on which to communicate with.
Dictionaries or JSON strings are passed to the predictor instance over a socket, and the output is read back via the subprocess' stdout pipe.
Usage
from pyH2oMojo import H2oMojoPredictor
# pass at minimum, the filename of the MOJO, and the predictor type
predictor = H2oMojoPredictor("my_nn.zip", "multivariate", verbose=True)
print(H2oMojoPredictor.predict({"sepal_length":4.9, "sepal_width":3.0, "petal_length":1.4,"petal_width":0.2}))
>>> {"prediction":"Iris-setosa", "predictionIndex":1, "classProbabilities":[0.0, 0.944, 0.056]}
print(H2oMojoPredictor.supported_predictors())
>>> ["multivariate", "regression", "ordinal", "binomial", "autoencoder", "clustering", "dimreduction"]
# other constructor parameters include:
# x_cols=None # List of columns to be passed to predict() - by default everything is passed
# x_types=None # Dictionary of column name and types ('int', 'real', 'str') - these values will be converted before being sent to the model.
# connection_timeout=10.0 # Number of seconds to wait for the Java subprocess to start before raising a runtime error
# prediction_timeout=3.0 # Number of seconds to wait for a response from the Java subprocess before raising a runtime error
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyH2oMojo-0.1.1.tar.gz
(12.8 MB
view details)
Built Distribution
pyH2oMojo-0.1.1-py3-none-any.whl
(12.8 MB
view details)
File details
Details for the file pyH2oMojo-0.1.1.tar.gz
.
File metadata
- Download URL: pyH2oMojo-0.1.1.tar.gz
- Upload date:
- Size: 12.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76de061740b7669e4c8566a8684c0ff53d8c3db44af357d72cf7ce1ccb71bed7 |
|
MD5 | 2b8cc2dba44b642f50cf6704657bc719 |
|
BLAKE2b-256 | ac27c273ceba08ccbe02005cb0d0a6ad95146f46fb654eac969509ef7bc95283 |
File details
Details for the file pyH2oMojo-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: pyH2oMojo-0.1.1-py3-none-any.whl
- Upload date:
- Size: 12.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9374bb3a5dcfdebbe1362daf22bfaba472f61075d8e73cad116f0f1b572b527e |
|
MD5 | d36fac1287902574e42d6c1737fd6c08 |
|
BLAKE2b-256 | d33894f937c21049d7cc58e7af2db7204981061b1888f10a36a6e223c28e5573 |