Skip to main content

H2O MOJO wrapper - allows predictions from python without the webserver overhead.

Project description

pyH2oMojo

Unofficial Python wrapper for H2o MOJO's

A lightweight python wrapper around an H2o EasyPredictModelWrapper instance

Instantiating the object will launch the bundled Jar file, and establish a port on localhost on which to communicate with.

Dictionaries or JSON strings are passed to the predictor instance over a socket, and the output is read back via the subprocess' stdout pipe.

Usage

from pyH2oMojo import H2oMojoPredictor
# pass at minimum, the filename of the MOJO, and the predictor type
predictor = H2oMojoPredictor("my_nn.zip", "multivariate", verbose=True)

print(H2oMojoPredictor.predict({"sepal_length":4.9, "sepal_width":3.0, "petal_length":1.4,"petal_width":0.2}))
>>> {"prediction":"Iris-setosa", "predictionIndex":1, "classProbabilities":[0.0, 0.944, 0.056]}

print(H2oMojoPredictor.supported_predictors())
>>> ["multivariate", "regression", "ordinal", "binomial", "autoencoder", "clustering", "dimreduction"]

# other constructor parameters include:
# x_cols=None # List of columns to be passed to predict() - by default everything is passed
# x_types=None # Dictionary of column name and types ('int', 'real', 'str') - these values will be converted before being sent to the model. 
# connection_timeout=10.0 # Number of seconds to wait for the Java subprocess to start before raising a runtime error
# prediction_timeout=3.0 # Number of seconds to wait for a response from the Java subprocess before raising a runtime error

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyH2oMojo-0.1.1.tar.gz (12.8 MB view details)

Uploaded Source

Built Distribution

pyH2oMojo-0.1.1-py3-none-any.whl (12.8 MB view details)

Uploaded Python 3

File details

Details for the file pyH2oMojo-0.1.1.tar.gz.

File metadata

  • Download URL: pyH2oMojo-0.1.1.tar.gz
  • Upload date:
  • Size: 12.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyH2oMojo-0.1.1.tar.gz
Algorithm Hash digest
SHA256 76de061740b7669e4c8566a8684c0ff53d8c3db44af357d72cf7ce1ccb71bed7
MD5 2b8cc2dba44b642f50cf6704657bc719
BLAKE2b-256 ac27c273ceba08ccbe02005cb0d0a6ad95146f46fb654eac969509ef7bc95283

See more details on using hashes here.

File details

Details for the file pyH2oMojo-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyH2oMojo-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9374bb3a5dcfdebbe1362daf22bfaba472f61075d8e73cad116f0f1b572b527e
MD5 d36fac1287902574e42d6c1737fd6c08
BLAKE2b-256 d33894f937c21049d7cc58e7af2db7204981061b1888f10a36a6e223c28e5573

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page