Skip to main content

Data cube for handling atmospheric observations of profiling remote sensing instruments.

Reason this release was yanked:

problems during installation, use 3.3.2 instead

Project description

pyLARDA v3

DOI

pyLARDA for accessing and analysing ground based remote sensing data. It tries to simplify following tasks:

  • finding netcdf files in a complex folder structure
  • loading data from differently formatted netcdfs
  • stitching data from consecutive files together
  • simplify common plotting tasks

Documentation is available at larda-doc

Requirements

Currently pyLARDA is only targeted on unix operating system.

matplotlib==3.0.2
toml==0.10.0
numpy>=1.19
requests==2.9.1
netCDF4==1.4.2
scipy==1.2.0
msgpack
tqdm
numba
cython
xarray
# and for the documentation
sphinx
recommonmark
sphinx_rtd_theme

Quick Setup

The pyLARDA module can be installed with:

python3 -m venv larda-env
source larda-env/bin/activate
pip3 install -r requirements.txt

mkdir larda3
cd larda3
git clone https://github.com/lacros-tropos/larda.git

python3 setup.py install

Depending on your datasource of choice:

remote

You just need to know the link to the backend backend of choice and may move to Quickstart.

local

For local data it is necessary to include the source in a certain directory structure. For the setup of the config files consult the Guide to config-files.

├── larda        # github managed source code
│   ├── docs
│   ├── examples
│   ├── ListCollector.py
│   ├── pyLARDA  # actual python module
│   ├── README.md
│   ├── requirements.txt
│   └── run_docs.sh
├── larda-cfg  # configuration files
│   ├── campaigns.toml
│   ├── [single campaign].toml
│   └── [single campaign].toml
├── larda-connectordump
│   └── [auto generated subfolder for each campaign]
├── larda-description
│   ├── [...].rst
└── larda-doc           # folder if you want to generate the docs
    └── ... 

Quickstart

Make sure that the module is available at your pythonpath when in doubt use sys.path.append('dir').

import pyLARDA

link_to_backend = 'http://...' 
# or use pyLARDA.LARDA('local')
larda = pyLARDA.LARDA('remote', uri=link_to_backend)
print('available campaigns', larda.campaign_list)
larda.connect('campaign_name')
MIRA_Zg = larda.read("MIRA","Zg", [dt_begin, dt_end], [0, 4000])
fig, ax = pyLARDA.Transformations.plot_timeheight2l
    (MIRA_Zg, range_interval=[500, 3000], z_converter='lin2z')
fig.savefig('MIRA_Z.png', dpi=250)

For more examples refer to the scripts in the examples directory.

Architecture

overview on the structure

Documentation

An online version of the documentation is available at https://lacros-tropos.github.io/larda-doc/. For building simply run .\run_docs.sh, when the additinal libraries (sphinx, recommonmark and sphinx_rtd_theme are available; see above).

History

This version of the LACROS research data analyser (LARDA) is based on two prior versions in C and python2 respectively. Major changes are the migration to python3, netcdf4 and the inclusion of radar Doppler spectra.

License

Copyright 2021, pyLARDA-dev-team (Johannes Bühl, Martin Radenz, Willi Schimmel, Teresa Vogl, Moritz Lochmann, Johannes Röttenbacher)

MIT License For details see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyLARDA-3.3.tar.gz (5.4 MB view details)

Uploaded Source

File details

Details for the file pyLARDA-3.3.tar.gz.

File metadata

  • Download URL: pyLARDA-3.3.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for pyLARDA-3.3.tar.gz
Algorithm Hash digest
SHA256 40a5beaf4441e4c6fd9ea500445166c45b49d58ee0424edf9764ec4c6cea7b9c
MD5 38de267c7acd1f0bf4ad33a3e1138512
BLAKE2b-256 fa1fd69b29f07a455f48d5baab1e3543ad42333534894323e0f6b32d7b255387

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page