Skip to main content

Module for Lock-In Analysis

Project description

Digital lock-in analysis

Perform digital lock-in analysis

Installing this package

Use pip to install it by:

$ pip install pyLIA

Simple examples

Here is a simple example on how to use the code:

import pyLIA
import numpy as np
import matplotlib.pyplot as plt

data = np.load('camera.npy') ## Thermal acquisition
sampling_freq = 400  ## Sampling freqency of the thermal video [Hz]
load_freq = 55  ## Load freqency of the excitation test [Hz]

mag, ph = pyLIA.LIA(data,sampling_freq,load_freq)

plt.figure()
plt.imshow(mag)
cbar = plt.colorbar()
cbar.set_label('[unit]')

plt.figure()
plt.imshow(ph)
cbar = plt.colorbar()
cbar.set_label('[deg]')

Reference:

Thermoelasticity-based modal damage identification; L. Capponi, J. Slavič, G. Rossi, M. Boltežar; International Journal of Fatigue, 105661 <https://www.sciencedirect.com/science/article/pii/S0142112320301924>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyLIA-0.3.tar.gz (2.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page