Skip to main content

Multimode optical fiber simulation package.

Project description

# pyMMF

Simple module to find numerically the propagation modes and their corresponding propagation constants of multimode fibers of arbitrary index profiles.

## What is it?

pyMMF is a simple module that allows finding the propagating modes of multimode fibers with arbitrary index profiles and simulates the transmission matrix for a given length. The solver can also take into account the curvature of the fiber (experimental). This code is not designed to compete with commercially available software in term of accuracy of the mode profiles/propagation constants or speed, it aims at quickly simulating realistic transmission matrices of short sections of fiber.

## Citing the code

If the code was helpful to your work, please consider citing it:

[![DOI](https://zenodo.org/badge/148702831.svg)](https://zenodo.org/badge/latestdoi/148702831)

## Installation

Download the file and execute the following command.

`shell python setup.py install `

## Contributions

This code is written and maintained by S. M. Popoff

I thank contributions from Pavel Gostev [vongostev/pyMMF](https://github.com/vongostev/pyMMF):

  1. Semianalytical solver has parallelized by joblib, thanks to which its performance has increased dramatically on thick fibers.

  2. Stability of fast radial solver increased, specifically on thick fibers and small wavelengths.

## How does it work?

pyMMF proposes different solvers to find the propagation constants and mode profiles of multimode optical fibers. They solve the the transverse part of the scalar propagation equation.

### Semi-analytical solver for step-index

Ideal step-index fibers allow anlytical dispersion relations and mode profile expressions. This solver numericaly solves this relation dispersion and compute the modes using the analytical formula of the modes. It is only valid for ideal step-index fibers.

Use solver.solve(mode = ‘SI’, …)

### Radial solver

Solver for fibers with an axisymmetric index profile defined by a radial function, e.g. graded index fibers. It solves the 1D problem using the finite difference recursive scheme for Riccati’s equations. It allows finding accurately and quickly the mode profiles and propagation constants for fibers when the index profiles only depends on the radial coordinate.

More details here:

Use solver.solve(mode = ‘radial’, …)

### Eigenvalue solver

It finds the modes by numerically finding the eigenvalues of the transverse operator represented as a large but sparse matrix on a square mesh. The eigenvectors represent the mode profiles and the eigenvalues give the corresponding propagation constants. The solver needs to know how many modes you want to compute, if the number set is higher than the number of propagationg modes, it will only returns the propagating modes. This solver is slower and requires finer discretisations compared to the radial solver, but it allows using arbitrary, and in particular non-axisymmetric, index profiles. It also allows introducing bending to the fiber and finding the modes of the perturbed fiber.

More detailed explanations can be found is this two-part tutorial:

Use solver.solve(mode = ‘eig’, …)

### WKB solver

Find the propagation constants of parabolic GRIN multimode fibers under the WKB (Wentzel–Kramers–Brillouin) approximation [1]_. This approximation leads to inaccurate results for modes close to the cutoff, which can be a significant proportion of the modes for typical fibers. It is provided only for comparison.

## Examples

### Example 1: Finding the modes of a graded index fiber (GRIN)

#### Preambule

`python import pyMMF import numpy as np import matplotlib.pyplot as plt `

#### Parameters

We first set the parameters of the fiber we want to simulate.

`python NA = 0.275 radius = 7 # in microns areaSize = 2.5*radius # calculate the field on an area larger than the diameter of the fiber npoints = 2**7 # resolution of the window n1 = 1.45 wl = 0.6328 # wavelength in microns curvature = None `

#### Index profile

We first create the fiber object

`python profile = pyMMF.IndexProfile(npoints = npoints, areaSize = areaSize) `

We use the helper function that generates a parabolic index profile:

`python profile.initParabolicGRIN(n1=n1, a=radius, NA=NA) `

We then give the profile and the wavelength to the solver

`python solver = pyMMF.propagationModeSolver() solver.setIndexProfile(profile) solver.setWL(wl) `

#### Run the solver

The solver needs to know how many modes you want to compute. We estimate the number of modes of a GRIN multimode fiber.

`python NmodesMax = pyMMF.estimateNumModesGRIN(wl,radius,NA) `

To be safe, we ask for a bit more than the estimated number of modes previously calculated.

##### 2d eigenvalue solver

`python modes = solver.solve(nmodesMax=NmodesMax+10, boundary = 'close', mode = 'eig', curvature = curvature) `

##### Radial solver

`python modes = solver.solve(mode = 'radial') `

#### Results

Ask for the number of propagating modes found by the solver (other modes are discarded).

`python Nmodes = modes.number `

Display the profile of a mode

`python m = 10 plt.figure() plt.subplot(121) plt.imshow(np.real(modes.profiles[m]).reshape([npoints]*2)) plt.subplot(122) plt.imshow(np.imag(modes.profiles[m]).reshape([npoints]*2)) `

### Other examples

Other examples are provided as notebooks in the [example](example) folder.

## Release notes

### 0.6

#### Bug correction

  • solve issue with optimized (scipy bisect) radial solver (see [PR #8](../../pull/8))

#### Changes

  • switch radial solvers: radial corresponds now to the corrected optimized radial solver using scipy for bisect search, radial_legacy is the old one

  • Store radial and azimuthal functions of the modes in the radial solver in modes0.data[<ind_mode>][‘radial_func’] and modes0.data[<ind_mode>][‘azimuthal_func’], can be used to apply to your mesh, e.g.:

`python modes = solver.solve(mode='radial_test', ...) X, Y = np.meshgrid(...) TH = np.arctan2(Y, X) R = np.sqrt(X**2 + Y**2) ind_mode = 0 psi_r = modes.data[ind_mode]['radial_func'](R) psi_theta = modes.data[ind_mode]['azimuthal_func'](TH) plt.figure() plt.imshow(np.real(R*TH)) `

  • in the radial solver, argument min_radius_bc is now in units of wavelength, defaults to 4.

### 0.5

#### Changes

  • Radial solver performance improvements (Pavel Gostev)

  • Semi-analytical solver performance improvements (Pavel Gostev)

  • Improved documentation

  • Add Jupyter notebook examples

### 0.4

  • First public version

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyMMF-0.6.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

pyMMF-0.6-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file pyMMF-0.6.tar.gz.

File metadata

  • Download URL: pyMMF-0.6.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pyMMF-0.6.tar.gz
Algorithm Hash digest
SHA256 36f05c270e3c83b2f826d0b3e1ca767ded6d45e2b0a0b703d4a1e3ef0d106649
MD5 14b35d768584d406c5ee13ec0b8feac7
BLAKE2b-256 d8f1c360a37789a9ab9eaa76adc5cd59691cbe18be246f7a9e911e3a38907965

See more details on using hashes here.

File details

Details for the file pyMMF-0.6-py3-none-any.whl.

File metadata

  • Download URL: pyMMF-0.6-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for pyMMF-0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0898f687ae3b0c37d8344ba9bd7a061449c4c4e244849286726db431107a142a
MD5 fa3e6b3568297abf127ce5315916d21d
BLAKE2b-256 4000a821259dd11ae694e23d49ca7d26d0ccb4a3e3077aca3f3cfd589c4f57f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page