Skip to main content

A python toolbox to conduct non-invasive brain stimulation experiments (NIBS).

Project description

pyNIBS

Preprocessing, postprocessing, and analyses routines for non-invasive brain stimulation experiments.

Latest Release Documentation pipeline status coverage report

pyNIBS provides the functions to allow cortical mappings with transcranial magnetic stimulation (TMS) via functional analysis. pyNIBS is developed to work with SimNIBS, i.e. SimNIBS' meshes and FEM results can directly be used. Currently, SimNIBS 3.2.5 is supported. Have a look at our gitlab repository for SimNIBS 4 (beta) support.

See the documentation for package details and our protocol publication for an extensive example of the usage.

Installation

Via pip:

pip install pynibs

Or clone the source repository and install via setup.py:

git clone https://gitlab.gwdg.de/tms-localization/pynibs
cd pynibs
python setup.py develop

To import CED Signal EMG data use the export to .mat feature of Signal. To read .cfs files exported with CED Signal you might need to manually compile the libbiosig package.

Bugs

For sure. Please open an issue or feel free to file a PR.

Citation

Please cite Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654 when using this toolbox in your research.

References

  • Weise, K., Numssen, O., Thielscher, A., Hartwigsen, G., & Knösche, T. R. (2020). A novel approach to localize cortical TMS effects. Neuroimage, 209, 116486. doi: 10.1016/j.neuroimage.2019.116486
  • Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654
  • Weise, K., Numssen, O., Kalloch, B., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R. (2022). Precise transcranial magnetic stimulation motor-mapping. Nature Protocols. (accepted)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynibs-0.2022.8.tar.gz (254.0 kB view details)

Uploaded Source

Built Distribution

pynibs-0.2022.8-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file pynibs-0.2022.8.tar.gz.

File metadata

  • Download URL: pynibs-0.2022.8.tar.gz
  • Upload date:
  • Size: 254.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pynibs-0.2022.8.tar.gz
Algorithm Hash digest
SHA256 26705b48c76c98d3e64ddb09ecb54cdc84a97df47ad3313266cf4ee4387865a8
MD5 83522e7fde4cd0887004aa88d6f76673
BLAKE2b-256 9f5cb5d38ce96434cc308b31c5b6e4e51b9310716818d35246b31ea175e71338

See more details on using hashes here.

File details

Details for the file pynibs-0.2022.8-py3-none-any.whl.

File metadata

  • Download URL: pynibs-0.2022.8-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for pynibs-0.2022.8-py3-none-any.whl
Algorithm Hash digest
SHA256 d45b67822b3a99060ee604fa82ab6144243facc7af1b653efacca5712eb67ddb
MD5 8600988988a0227e3e298358787a1c6f
BLAKE2b-256 fa7fcdff436d0b585595358260e6b6ce1c0e180d1157f4c909d725b68a2a69c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page