Skip to main content

A python toolbox to conduct non-invasive brain stimulation experiments (NIBS).

Project description

pyNIBS

Preprocessing, postprocessing, and analyses routines for non-invasive brain stimulation experiments.

Latest Release Documentation pipeline status coverage report

pyNIBS provides the functions to allow cortical mappings with transcranial magnetic stimulation (TMS) via functional analysis. pyNIBS is developed to work with SimNIBS, i.e. SimNIBS' meshes and FEM results can directly be used. Currently, SimNIBS 3.2.5 is supported. Have a look at our gitlab repository for SimNIBS 4 (beta) support.

See the documentation for package details and our protocol publication for an extensive example of the usage.

Installation

Via pip:

pip install pynibs

Or clone the source repository and install via setup.py:

git clone https://gitlab.gwdg.de/tms-localization/pynibs
cd pynibs
python setup.py develop

To import CED Signal EMG data use the export to .mat feature of Signal. To read .cfs files exported with CED Signal you might need to manually compile the libbiosig package.

Bugs

For sure. Please open an issue or feel free to file a PR.

Citation

Please cite Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654 when using this toolbox in your research.

References

  • Weise, K., Numssen, O., Thielscher, A., Hartwigsen, G., & Knösche, T. R. (2020). A novel approach to localize cortical TMS effects. Neuroimage, 209, 116486. doi: 10.1016/j.neuroimage.2019.116486
  • Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654
  • Weise, K., Numssen, O., Kalloch, B., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R. (2022). Precise transcranial magnetic stimulation motor-mapping. Nature Protocols. (accepted)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynibs-0.2022.9.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

pynibs-0.2022.9-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file pynibs-0.2022.9.tar.gz.

File metadata

  • Download URL: pynibs-0.2022.9.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.14

File hashes

Hashes for pynibs-0.2022.9.tar.gz
Algorithm Hash digest
SHA256 20c023fe41301a7dcb1ba900cd57c3e792d5d2aab7f0eda29058df9dea6c2543
MD5 682bf063555ff924457b19211ef33b44
BLAKE2b-256 b0c0e6a3810de4a834898213d5331ee49574c42511ccdd3954655501c8c53c50

See more details on using hashes here.

File details

Details for the file pynibs-0.2022.9-py3-none-any.whl.

File metadata

  • Download URL: pynibs-0.2022.9-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.14

File hashes

Hashes for pynibs-0.2022.9-py3-none-any.whl
Algorithm Hash digest
SHA256 51aa020f28e8d043302b3458bceef3cbf8f059863cdda1f12677e8fcb76b556e
MD5 cd71ccb0a6b7f93457d63208c4027ecf
BLAKE2b-256 4ef57feed90cf84bf8ccf6022f138f45e00394e712179f343f83139f4229c6de

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page