Skip to main content

A python toolbox to conduct non-invasive brain stimulation experiments (NIBS).

Project description

pyNIBS

Preprocessing, postprocessing, and analyses routines for non-invasive brain stimulation experiments.

Latest Release Documentation pipeline status coverage report

pyNIBS provides the functions to allow cortical mappings with transcranial magnetic stimulation (TMS) via functional analysis. pyNIBS is developed to work with SimNIBS, i.e. SimNIBS' meshes and FEM results can directly be used. Currently, SimNIBS 3.2.6 and SimNIBS 4.0.1 is supported.

See the documentation for package details and our protocol publication for a extensive usage examples. Free view only version of the paper: https://t.co/uv7CmVw6tp.

Installation

Via PiP:

pip install pynibs

Or clone the source repository and install via setup.py:

git clone https://gitlab.gwdg.de/tms-localization/pynibs
cd pynibs
python setup.py develop

To import CED Signal EMG data use the export to .mat feature of Signal. To read .cfs files exported with CED Signal you might need to manually compile the libbiosig package.

Bugs

For sure. Please open an issue or feel free to file a PR.

Citation

Please cite Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654 when using this toolbox in your research.

References

  • Weise*, K., Numssen*, O., Thielscher, A., Hartwigsen, G., & Knösche, T. R. (2020). A novel approach to localize cortical TMS effects. NeuroImage, 209, 116486. doi: 10.1016/j.neuroimage.2019.116486
  • Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knösche, T. R., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. NeuroImage, 245, 118654. doi:10.1016/j.neuroimage.2021.118654
  • Weise*, K., Numssen*, O., Kalloch, B., Zier, A. L., Thielscher, A., Hartwigsen°, G., Knösche°, T. R. (2023). Precise transcranial magnetic stimulation motor-mapping. Nature Protocols. doi:10.1038/s41596-022-00776-6
  • Jing, Y., Numssen, O., Weise, K., Kalloch, B., Buchberger, L., Haueisen, J., Hartwigsen, G., Knösche, T. (2023). Modeling the Effects of Transcranial Magnetic Stimulation on Spatial Attention. bioRxiv. doi: 10.1101/2023.01.11.523548

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynibs-0.2023.8.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

pynibs-0.2023.8-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file pynibs-0.2023.8.tar.gz.

File metadata

  • Download URL: pynibs-0.2023.8.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.17

File hashes

Hashes for pynibs-0.2023.8.tar.gz
Algorithm Hash digest
SHA256 ac555c1c50a6a0932a149629636951352ed2926f7d6dc95accc93cf7d4c993a0
MD5 ded066f525779efb0de0573d11c580e3
BLAKE2b-256 7e1b262c4a2b18c35d589ccad558cc8aebdc335265dc0fcd4ef8ea53d70de9c9

See more details on using hashes here.

File details

Details for the file pynibs-0.2023.8-py3-none-any.whl.

File metadata

  • Download URL: pynibs-0.2023.8-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.17

File hashes

Hashes for pynibs-0.2023.8-py3-none-any.whl
Algorithm Hash digest
SHA256 8a1425b143a806baf86e0d8118659e52bac547f80c4bd8ddf393cc4e478e5521
MD5 bec9744cee33e9c0053b7d9a40a58bcd
BLAKE2b-256 ff6d2ea16fc6c2245bd5d6deb258f129de3b44dbd3bdf243d1de40ea7c5c1fa4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page