Skip to main content

A Python library for NNRW (neural network with random weights)

Project description

pyNNRW

pyNNRW: A Python library for NNRW (neural network with random weights).

Basic functions:

  1. Implements 2 fundamental NNRW flavors, i.e., ELM and RVFL.
  2. Performance comparison with main machine learning models, e.g., SVM, decision tree, MLP.
  3. NNRW-based ensembles (in progress).

Publication

Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348

Installation

pip install pyNNRW

How to use

Download the sample dataset from the /data folder. There are two data files: 1. 7044X_RAMAN.csv 2. 7143X_UV.csv.
The two files are the Raman and UV (ultra-violet) spectroscopic profiling data of herb samples from 4 different regions.

Use the following sample code to use the package:

<1> Use low-level classes, e.g., ELM, RVFL. The following code trains and tests an ELM model.

# ===============================
# Import library
# ===============================
# import the library
from pyNNRW import nnrw

# ===============================
# Load dataset
# ===============================
df = pd.read_csv('7044X_RAMAN.csv')
X = np.array(df.iloc[:,1:])
y = np.array(df.iloc[:,0]) # 1st col is the label
n_classes = len(set(y))
x_train, x_test, t_train, t_test = train_test_split(X, y, test_size=0.2)
t_train = to_categorical(t_train, n_classes).astype(np.float32)
t_test = to_categorical(t_test, n_classes).astype(np.float32)
# print(x_train.shape, x_test.shape, t_train.shape, t_test.shape)

# ===============================
# set ELM parameters
# ===============================
n_hidden_nodes = L #x_train.shape[1]
loss = 'mean_squared_error' # 'mean_absolute_error'
activation = 'sigmoid' # 'identity'

# ===============================
# Instantiate ELM
# ===============================
model = nnrw.ELM(
    n_input_nodes = x_train.shape[1],
    n_hidden_nodes = n_hidden_nodes,
    n_output_nodes = n_classes,
    loss = loss,
    activation=activation,
    name='elm'
)

# ===============================
# Training
# ===============================
    
train_loss, train_acc, train_precision, train_recall = model.evaluate(x_train, t_train, metrics=['loss', 'accuracy', 'precision', 'recall'])

# ===============================
# Validation
# ===============================
val_loss, val_acc, val_precision, val_recall = model.evaluate(x_test, t_test, metrics=['loss', 'accuracy', 'precision', 'recall'])

<2> You may also use high-level APIs, as follows.

# train and test an ELM model
train_acc, val_acc, t = nnrw.ELMClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# train and test a RVFL model
train_acc, val_acc, t = nnrw.RVFLClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# Conduct a performance test for ELM at varied L hyper-parameters (1~60). Each iteration is averaged on 20 rounds.
train_accs, val_accs, ts = nnrw.PerformenceTests(ELMClf, X, y, Ls = list(range(1, 60)), N = 20)

New function in v0.2.0

We added Kernel-RVFL, which is a generalized form of NNRW.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyNNRW-0.2.1.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

pyNNRW-0.2.1-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file pyNNRW-0.2.1.tar.gz.

File metadata

  • Download URL: pyNNRW-0.2.1.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/1.5.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyNNRW-0.2.1.tar.gz
Algorithm Hash digest
SHA256 28aa6552e01d4aa2ea112857597c2f5075a8ce841cd315cbaf80acc6a3bd4dc2
MD5 e20a1fc2a6ef921c28e62ac68a4ab7fd
BLAKE2b-256 7706e7c0d35e24f9d5bfa680ec0c4683d27b7ce0775a7422ce0a9a61aabcbbdb

See more details on using hashes here.

File details

Details for the file pyNNRW-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: pyNNRW-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/1.5.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pyNNRW-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f38554a599d48778675d3bab425bc73c97ab1630403cda74ffbfcabe0f22d179
MD5 6bd7371800210377be58a0e53a160ca8
BLAKE2b-256 70f027932017db98b62c0fb60653350c6538866ee35105ca3a189a43fab0fc78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page