Skip to main content

A Python library for NNRW (neural network with random weights)

Project description

pyNNRW

pyNNRW: A Python library for NNRW (neural network with random weights).

Basic functions:

  1. Implements 2 fundamental NNRW flavors, i.e., ELM and RVFL.
  2. Performance comparison with main machine learning models, e.g., SVM, decision tree, MLP.
  3. NNRW-based ensembles (in progress).

Publication

Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348

Installation

pip install pyNNRW

How to use

Download the sample dataset from the /data folder. There are two data files: 1. 7044X_RAMAN.csv 2. 7143X_UV.csv.
The two files are the Raman and UV (ultra-violet) spectroscopic profiling data of herb samples from 4 different regions.

Use the following sample code to use the package:

<1> Use low-level classes, e.g., ELM, RVFL. The following code trains and tests an ELM model.

# ===============================
# Import library
# ===============================
# import the library
from pyNNRW import elm, rvfl

# ===============================
# Load dataset
# ===============================
df = pd.read_csv('7044X_RAMAN.csv')
X = np.array(df.iloc[:,1:])
y = np.array(df.iloc[:,0]) # 1st col is the label
n_classes = len(set(y))
x_train, x_test, t_train, t_test = train_test_split(X, y, test_size=0.2)
t_train = to_categorical(t_train, n_classes).astype(np.float32)
t_test = to_categorical(t_test, n_classes).astype(np.float32)
# print(x_train.shape, x_test.shape, t_train.shape, t_test.shape)

# ===============================
# set ELM parameters
# ===============================
n_hidden_nodes = L #x_train.shape[1]
loss = 'mean_squared_error' # 'mean_absolute_error'
activation = 'sigmoid' # 'identity'

# ===============================
# Instantiate ELM
# ===============================
model = elm.ELM( # or rvfl.RVFL
    n_input_nodes = x_train.shape[1],
    n_hidden_nodes = n_hidden_nodes,
    n_output_nodes = n_classes,
    loss = loss,
    activation=activation,
    name='elm'
)

# ===============================
# Training
# ===============================
    
train_loss, train_acc, train_precision, train_recall = model.evaluate(x_train, t_train, metrics=['loss', 'accuracy', 'precision', 'recall'])

# ===============================
# Validation
# ===============================
val_loss, val_acc, val_precision, val_recall = model.evaluate(x_test, t_test, metrics=['loss', 'accuracy', 'precision', 'recall'])

<2> You may also use high-level APIs, as follows.

from pyNNRW import nnrw

# train and test an ELM model
train_acc, val_acc, t = nnrw.ELMClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# train and test a RVFL model
train_acc, val_acc, t = nnrw.RVFLClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# Conduct a performance test for ELM at varied L hyper-parameters (1~60). Each iteration is averaged on 20 rounds.
train_accs, val_accs, ts = nnrw.PerformenceTests(ELMClf, X, y, Ls = list(range(1, 60)), N = 20)

New function in v0.2.0

We added Kernel-NNRW, which provides a series of kernels combined with NNRW.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyNNRW-0.2.8.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

pyNNRW-0.2.8-py3-none-any.whl (28.7 kB view details)

Uploaded Python 3

File details

Details for the file pyNNRW-0.2.8.tar.gz.

File metadata

  • Download URL: pyNNRW-0.2.8.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.6

File hashes

Hashes for pyNNRW-0.2.8.tar.gz
Algorithm Hash digest
SHA256 6cab6af245191e039573a5559383b8c55c85f24ef3303063ce2f85e220f758ee
MD5 87bfcd9550b026f68d2996e02191114e
BLAKE2b-256 02092a3fd4cbbfe9eef7c24afbd790df11257ef2749eee72577c9dd9c9bb6b3a

See more details on using hashes here.

File details

Details for the file pyNNRW-0.2.8-py3-none-any.whl.

File metadata

  • Download URL: pyNNRW-0.2.8-py3-none-any.whl
  • Upload date:
  • Size: 28.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.6

File hashes

Hashes for pyNNRW-0.2.8-py3-none-any.whl
Algorithm Hash digest
SHA256 cc2019fc415a468fd7800aa7d817af330a5d3932cf8ea33b859e91b5b05de3d6
MD5 7ba5f74ae6b447873b62838feede3220
BLAKE2b-256 b50bbfd884ba85a7afd6787b05b297ff9b31041abb42e4865f6e375b7f9d1738

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page