Skip to main content

A Python library for NNRW (neural network with random weights)

Project description

pyNNRW

pyNNRW: A Python library for NNRW (neural network with random weights).

Basic functions:

  1. Implements 2 fundamental NNRW flavors, i.e., ELM and RVFL.
  2. Performance comparison with main machine learning models, e.g., SVM, decision tree, MLP.
  3. NNRW-based ensembles (in progress).

Publication

Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348

Installation

pip install pyNNRW

How to use

Download the sample dataset from the /data folder. There are two data files: 1. 7044X_RAMAN.csv 2. 7143X_UV.csv.
The two files are the Raman and UV (ultra-violet) spectroscopic profiling data of herb samples from 4 different regions.

Use the following sample code to use the package:

<1> Use low-level classes, e.g., ELM, RVFL. The following code trains and tests an ELM model.

# ===============================
# Import library
# ===============================
# import the library
from pyNNRW import elm, rvfl

# ===============================
# Load dataset
# ===============================
df = pd.read_csv('7044X_RAMAN.csv')
X = np.array(df.iloc[:,1:])
y = np.array(df.iloc[:,0]) # 1st col is the label
n_classes = len(set(y))
x_train, x_test, t_train, t_test = train_test_split(X, y, test_size=0.2)
t_train = to_categorical(t_train, n_classes).astype(np.float32)
t_test = to_categorical(t_test, n_classes).astype(np.float32)
# print(x_train.shape, x_test.shape, t_train.shape, t_test.shape)

# ===============================
# set ELM parameters
# ===============================
n_hidden_nodes = L #x_train.shape[1]
loss = 'mean_squared_error' # 'mean_absolute_error'
activation = 'sigmoid' # 'identity'

# ===============================
# Instantiate ELM
# ===============================
model = elm.ELM( # or rvfl.RVFL
    n_input_nodes = x_train.shape[1],
    n_hidden_nodes = n_hidden_nodes,
    n_output_nodes = n_classes,
    loss = loss,
    activation=activation,
    name='elm'
)

# ===============================
# Training
# ===============================
    
train_loss, train_acc, train_precision, train_recall = model.evaluate(x_train, t_train, metrics=['loss', 'accuracy', 'precision', 'recall'])

# ===============================
# Validation
# ===============================
val_loss, val_acc, val_precision, val_recall = model.evaluate(x_test, t_test, metrics=['loss', 'accuracy', 'precision', 'recall'])

<2> You may also use high-level APIs, as follows.

from pyNNRW import nnrw

# train and test an ELM model
train_acc, val_acc, t = nnrw.ELMClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# train and test a RVFL model
train_acc, val_acc, t = nnrw.RVFLClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# Conduct a performance test for ELM at varied L hyper-parameters (1~60). Each iteration is averaged on 20 rounds.
train_accs, val_accs, ts = nnrw.PerformenceTests(ELMClf, X, y, Ls = list(range(1, 60)), N = 20)

New function in v0.2.0

We added Kernel-NNRW, which provides a series of kernels combined with NNRW.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyNNRW-0.3.1.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

pyNNRW-0.3.1-py3-none-any.whl (29.7 kB view details)

Uploaded Python 3

File details

Details for the file pyNNRW-0.3.1.tar.gz.

File metadata

  • Download URL: pyNNRW-0.3.1.tar.gz
  • Upload date:
  • Size: 27.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyNNRW-0.3.1.tar.gz
Algorithm Hash digest
SHA256 98db12d907cd63a9a315d50ec7215334bab32c189f4f01d008525031ddc53fcc
MD5 a70da9aa7ed0ae0aae7625ce25ea9a8b
BLAKE2b-256 396dde4d317f365a79017bb71ee18b4a249ef30a9c3c5c0795f9bec0543a4eb5

See more details on using hashes here.

File details

Details for the file pyNNRW-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: pyNNRW-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 29.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyNNRW-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9d0970ec2d281f2c2a4cdb803ced3187808b6d1a503bb491f5670dff967d17be
MD5 f902bbf8048cea7816d536778d3765cc
BLAKE2b-256 6a6622d0b612caa1cf00bc79ffeef04116f524cbc88ff79ce55d46f79ab4ac67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page