Skip to main content

A Python library for NNRW (neural network with random weights)

Project description

pyNNRW

pyNNRW: A Python library for NNRW (neural network with random weights).

Basic functions:

  1. Implements 2 fundamental NNRW flavors, i.e., ELM and RVFL.
  2. Performance comparison with main machine learning models, e.g., SVM, decision tree, MLP.
  3. NNRW-based ensembles (in progress).

Publication

Spectroscopic Profiling-based Geographic Herb Identification by Neural Network with Random Weights [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, doi: 10.1016/j.saa.2022.121348

Installation

pip install pyNNRW

How to use

Download the sample dataset from the /data folder. There are two data files: 1. 7044X_RAMAN.csv 2. 7143X_UV.csv.
The two files are the Raman and UV (ultra-violet) spectroscopic profiling data of herb samples from 4 different regions.

Use the following sample code to use the package:

<1> Use low-level classes, e.g., ELM, RVFL. The following code trains and tests an ELM model.

# ===============================
# Import library
# ===============================
# import the library
from pyNNRW import elm, rvfl

# ===============================
# Load dataset
# ===============================
df = pd.read_csv('7044X_RAMAN.csv')
X = np.array(df.iloc[:,1:])
y = np.array(df.iloc[:,0]) # 1st col is the label
n_classes = len(set(y))
x_train, x_test, t_train, t_test = train_test_split(X, y, test_size=0.2)
t_train = to_categorical(t_train, n_classes).astype(np.float32)
t_test = to_categorical(t_test, n_classes).astype(np.float32)
# print(x_train.shape, x_test.shape, t_train.shape, t_test.shape)

# ===============================
# set ELM parameters
# ===============================
n_hidden_nodes = L #x_train.shape[1]
loss = 'mean_squared_error' # 'mean_absolute_error'
activation = 'sigmoid' # 'identity'

# ===============================
# Instantiate ELM
# ===============================
model = elm.ELM( # or rvfl.RVFL
    n_input_nodes = x_train.shape[1],
    n_hidden_nodes = n_hidden_nodes,
    n_output_nodes = n_classes,
    loss = loss,
    activation=activation,
    name='elm'
)

# ===============================
# Training
# ===============================
    
train_loss, train_acc, train_precision, train_recall = model.evaluate(x_train, t_train, metrics=['loss', 'accuracy', 'precision', 'recall'])

# ===============================
# Validation
# ===============================
val_loss, val_acc, val_precision, val_recall = model.evaluate(x_test, t_test, metrics=['loss', 'accuracy', 'precision', 'recall'])

<2> You may also use high-level APIs, as follows.

from pyNNRW import nnrw

# train and test an ELM model
train_acc, val_acc, t = nnrw.ELMClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# train and test a RVFL model
train_acc, val_acc, t = nnrw.RVFLClf(X, y, L = 20, verbose = False) # L is hidden layer nodes

# Conduct a performance test for ELM at varied L hyper-parameters (1~60). Each iteration is averaged on 20 rounds.
train_accs, val_accs, ts = nnrw.PerformenceTests(ELMClf, X, y, Ls = list(range(1, 60)), N = 20)

New function in v0.2.0

We added Kernel-NNRW, which provides a series of kernels combined with NNRW.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyNNRW-0.3.3.tar.gz (29.9 kB view details)

Uploaded Source

Built Distribution

pyNNRW-0.3.3-py3-none-any.whl (32.6 kB view details)

Uploaded Python 3

File details

Details for the file pyNNRW-0.3.3.tar.gz.

File metadata

  • Download URL: pyNNRW-0.3.3.tar.gz
  • Upload date:
  • Size: 29.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyNNRW-0.3.3.tar.gz
Algorithm Hash digest
SHA256 926eae0d4c5d78625d45a113a7d2526a55458487dc3562de77f932895f1ad73f
MD5 19c1c3efade76cfb55074f4776616799
BLAKE2b-256 05d0b646ff808706d0faef23d9c0dcca9eb316d8f4388b73ff33d0c46c37a23b

See more details on using hashes here.

File details

Details for the file pyNNRW-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: pyNNRW-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 32.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyNNRW-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7645b436c14d4b55ee0249909e38736b34d12633bcb96ad51f1eace8f2cde981
MD5 e52c3fb4be172c71b47b5f9bbf46cef9
BLAKE2b-256 c7ea74632d1d34dcd0f3cb8373291100950bd043e72943188c476ebd47d0dfc1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page