Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PLNPCA, PLN
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = PLN("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PLNPCA("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.47-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.47-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.47-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.47-py3-none-any.whl
Algorithm Hash digest
SHA256 7899692dbaa75c6b2a4d1811825e516205d800e7b2bd51fa15d13e3e7682fb66
MD5 0633d90162397b7bb61e194e062d8ab8
BLAKE2b-256 bc87043f5d6046cccb252381cb4ee131dac7e2a4cb2e299fcc9725fe80f733e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page