Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.51.tar.gz (90.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.51-py3-none-any.whl (80.9 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.51.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.51.tar.gz
  • Upload date:
  • Size: 90.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.51.tar.gz
Algorithm Hash digest
SHA256 6660d5ac587c046517ee817824cb4eba50f86e44ad69abb9e1c27652c3a40408
MD5 98531dc81bfef844ac3b4cac5962c129
BLAKE2b-256 9b7346f10e861f3b7cefb7e13e589921b2d289c9b068dc3638c58ffac9f03788

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.51-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.51-py3-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.51-py3-none-any.whl
Algorithm Hash digest
SHA256 6127f9f4fe676638c3bcb1af3615ed13e3327cb0bea598575f360e98f8368d8b
MD5 66baa761272966bae33c466af4b4e491
BLAKE2b-256 0a284a10e2510ce14d3f8cd898c83fcac44a47119377331a4e8f5acd544927a8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page