Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.52.tar.gz (90.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.52-py3-none-any.whl (81.0 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.52.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.52.tar.gz
  • Upload date:
  • Size: 90.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.52.tar.gz
Algorithm Hash digest
SHA256 1dd1ac22d1c664981cb874cd44bad03fdcc651e604bf401c3b9128ac9c2f322b
MD5 fd82e4680550245fd8a0ac4c60dd9509
BLAKE2b-256 f6d2036bde8ad57e3cd2aeb27f4321f79adde09d72479bf4e6c21a0ccb197693

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.52-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.52-py3-none-any.whl
  • Upload date:
  • Size: 81.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.52-py3-none-any.whl
Algorithm Hash digest
SHA256 a6913d36e4da87b6ed41bcb945d4788703d2c0eec76dca0071c43abac659de21
MD5 da72d672cc9e4c910843a7db00aafa71
BLAKE2b-256 26a76b2fcd4a9c83723b4813c6d06649f6f5551c57f92fa5e43c4715522f1af5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page