Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.53.tar.gz (90.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.53-py3-none-any.whl (81.0 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.53.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.53.tar.gz
  • Upload date:
  • Size: 90.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.53.tar.gz
Algorithm Hash digest
SHA256 91387c90e1bff84a26c5193751f166dafffbee550516523f2330e65cde6aad84
MD5 277e7ab8e6881ae90ff4aafc1d5a25b2
BLAKE2b-256 4320c59320e0c05026cd65288eb4f8d60f35173197694dc95e2a5ac0d795fccf

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.53-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.53-py3-none-any.whl
  • Upload date:
  • Size: 81.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.53-py3-none-any.whl
Algorithm Hash digest
SHA256 a7be06c6a57d1b14ec5725f891f43b5bd142cda1716ac7b0caba0c1bd056e70b
MD5 95482da24793d4e65f4006dbcc86a544
BLAKE2b-256 2174e07183e9ec9e62517b14f33ba17169af5b3796ea1cc9f3b4012a9abd735b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page