Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.54.tar.gz (90.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.54-py3-none-any.whl (81.1 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.54.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.54.tar.gz
  • Upload date:
  • Size: 90.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.54.tar.gz
Algorithm Hash digest
SHA256 0e2c276fc600c72076c1cf585770174851516d5e352eb71c6a255d58d76d9586
MD5 b3ec62535d9a443b1a813e97dadcc6ac
BLAKE2b-256 e22fac60736833545674c6415940b7b4bc74ff8f80ec90dd2e7a145ac265e0d9

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.54-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.54-py3-none-any.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.54-py3-none-any.whl
Algorithm Hash digest
SHA256 04cb6f930f0ad00c6dd6a285cb005fd7a7b326d838522315e63b69512cdbb087
MD5 85beebe93aaef8e5b9d17233afe7685d
BLAKE2b-256 e9ce66974c278dec401450528d33b976c12ecb3d8cdf50fd5a7ea47fcac34023

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page