Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.55.tar.gz (90.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.55-py3-none-any.whl (82.1 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.55.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.55.tar.gz
  • Upload date:
  • Size: 90.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.55.tar.gz
Algorithm Hash digest
SHA256 aa301eca4590edb23a0acf1cb851a4402c05d4c14e4f449eebb41fef85d207d7
MD5 7ebb6aee864cb226dece198c726139c5
BLAKE2b-256 63c6a7c9ac1e5d1ae293f10bcd78b21ebf064718516e8b773a65d7bd2de556fb

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.55-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.55-py3-none-any.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.55-py3-none-any.whl
Algorithm Hash digest
SHA256 78ee24fa2c8e720f16e95e95994281ff1375eb5af84437d6df9c0273efb9f044
MD5 a47af330d947745cb26bc38f6d9b9738
BLAKE2b-256 dd1fa6c23fa8b8a76bee6b05432dae506b91c9fbd416ddf896c5d29cf870fd9d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page