Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.56.tar.gz (91.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.56-py3-none-any.whl (82.1 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.56.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.56.tar.gz
  • Upload date:
  • Size: 91.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.56.tar.gz
Algorithm Hash digest
SHA256 79f2916e11081a051ca79116c68677b4a6067700665b6c9027cef2063dd76e43
MD5 e59e26ca2dd1517664ae49ef327fbaed
BLAKE2b-256 6028133af210ff4c5aff9d0c6404d33f97cee7077cfd4798454e315c068f988f

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.56-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.56-py3-none-any.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyPLNmodels-0.0.56-py3-none-any.whl
Algorithm Hash digest
SHA256 52f3e917168e8e3b4b088b4aa006c32e03987f3c67e1eded43ef0fa8e6257d53
MD5 fdc8b0a263bf4de99e1d9041c42b8e1e
BLAKE2b-256 2571b79daf634052e77de7ab77f54c72f675aa136775595c9fd81e04eb801dad

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page