Skip to main content

Package implementing PLN models

Project description

PLNmodels: Poisson lognormal models

The Poisson lognormal model and variants can be used for analysis of mutivariate count data. This package implements efficient algorithms to fit such models.

Installation

PLNmodels is available on pypi. The development version is available on GitHub.

Package installation

pip install pyPLNmodels

Usage and main fitting functions

The package comes with an ecological data set to present the functionality

import pyPLNmodels
from pyPLNmodels.models import PlnPCAcollection, Pln
from pyPLNmodels.oaks import load_oaks
oaks = load_oaks()

Unpenalized Poisson lognormal model (aka PLN)

pln = Pln.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True)
pln.fit()
print(pln)

Rank Constrained Poisson lognormal for Poisson Principal Component Analysis (aka PLNPCA)

pca =  PlnPCAcollection.from_formula("counts ~ 1  + tree + dist2ground + orientation ", data = oaks, take_log_offsets = True, ranks = [3,4,5])
pca.fit()
print(pca)

References

Please cite our work using the following references:

  • J. Chiquet, M. Mariadassou and S. Robin: Variational inference for probabilistic Poisson PCA, the Annals of Applied Statistics, 12: 2674–2698, 2018. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPLNmodels-0.0.57.tar.gz (139.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyPLNmodels-0.0.57-py3-none-any.whl (135.4 kB view details)

Uploaded Python 3

File details

Details for the file pyPLNmodels-0.0.57.tar.gz.

File metadata

  • Download URL: pyPLNmodels-0.0.57.tar.gz
  • Upload date:
  • Size: 139.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyPLNmodels-0.0.57.tar.gz
Algorithm Hash digest
SHA256 7457c773d4ecdb6b1660d05eaeb9ece78688f314d4cc3127dbb0f7e239080b2d
MD5 7c6a109d3a21577f0a9b7d9690310888
BLAKE2b-256 73d3051177e5aeeb0c8413b2edd25d4f3e37b050df59f9d495085c0a38a05d7d

See more details on using hashes here.

File details

Details for the file pyPLNmodels-0.0.57-py3-none-any.whl.

File metadata

  • Download URL: pyPLNmodels-0.0.57-py3-none-any.whl
  • Upload date:
  • Size: 135.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pyPLNmodels-0.0.57-py3-none-any.whl
Algorithm Hash digest
SHA256 f0fd3913b1cec455b90a2bf43c112c141fb411db3dd65b6afe5289545d314d3f
MD5 32e45da03577dfd08cb5a16ac89a7e08
BLAKE2b-256 fb48ad5677dbe3ef81c7fe5409962a3d9d19321d411aa1e475c138edd6f56d44

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page