Skip to main content

A Framework for creating a boilerplate template for ai projects that are ready for MLOps

Project description

Machine Learning Extension for pyPhases

This Extension adds:

  • an Exporter for PyTorch and TensorFlow Models.
  • an Modelmanager that can handle PyTorch and TensorFlow Models

Setup

  • add pyPhasesML to your dependencies or run pipp install -U pyPhasesML
  • add pyPhasesML to your plugins in the main project config f.e: in your project.yaml
name: bumpDetector
namespace: ibmt.tud

# load machine learning plugin
plugins:
  - pyPhasesML
  • you do not need to add the ModelExporter manually

Getting startet

Minimal Example

For a complete minimal example see, with loading data, training and evaluation see: https://gitlab.com/tud.ibmt.public/pyphases/pyphasesml-example-bumpdetector

Adding required config values

These values can be changed in your config. The default values are shown here:

modelPath: models/mymodels

# the name of the model (also defines the path: models/MyCnn/MyCnn.py)
modelName: CNNPytorch

# the model config for a specific model
model:
    kernelSize: 3

alwaysIgnoreClassIndex: null
inputShape: [16, 50]
oneHotDecoded: False

trainingParameter:
  useEventScorer: false
  stopAfterNotImproving: false
  maxEpochs: false
  batchSize: 32
  validationEvery: false
  optimizer: false
  batchSizeValidation: 32
  learningRate: 0.001
  learningRateDecay: 0.001
  validationMetrics: ["acc", "kappa"]

classification:
  type: classification
  classNames: [A, B]
  classWeights: [0.6, 0.4]

Adding a PyTorch Model CNNPytorch

Create a class that is compatible with your modelPath and modelname. So in this example, we need a class CNNPytorch in the path models/mymodels/CNNPytorch.py relative to your root.

This class is required to:

  • inherit from ModelTorchAdapter:
  • populate the self.model with a valid PyTorch-Model, in the define method
  • return a valid loss function in the method getLossFunction
import torch.nn as nn

from pyPhasesML.adapter.ModelTorchAdapter import ModelTorchAdapter

class CNNPytorch(ModelTorchAdapter):
    def define(self):
        length, channelCount = self.inputShape
        numClasses = self.numClasses

        self.model = nn.Conv1d(
            in_channels=channelCount, 
            out_channels=self.numClasses,
            kernel_size=self.getOption("kernelSize"),
        )

    def getLossFunction(self):
        return torch.nn.MultiLabelSoftMarginLoss(reduction="mean", weight=self.weightTensors)

Load the model

In a phase you can simply use the ModelManager to get the Model and registerData to save the state. There is no dependency on pyTorch or TensorFlow in this example, so you swap your models dynamicly depending on your environment:

import numpy as np
from pathlib import Path

from pyPhases import Phase
from pyPhasesML import DatasetWrapXY, ModelManager, TrainingSet


class TestModel(Phase):
    def main(self):
        # loads the model depending on modelPath and modelName
        model = ModelManager.getModel()
        
        input = np.randn(20, 16, 50)        
        output = model(input)
        # save the model state
        self.project.registerData("modelState", model)

Project details


Release history Release notifications | RSS feed

This version

0.6.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPhasesML-0.6.2.tar.gz (27.0 kB view details)

Uploaded Source

File details

Details for the file pyPhasesML-0.6.2.tar.gz.

File metadata

  • Download URL: pyPhasesML-0.6.2.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyPhasesML-0.6.2.tar.gz
Algorithm Hash digest
SHA256 96c5ab0900f19d359f67eafaac70136663836730325bb6e2862ef5130faddd41
MD5 62b6fa0a64c8fa97cff0a020e977b4cf
BLAKE2b-256 de803c6908ea594c5d1e710d36bff0ed9ed4da8ddecda14978cecb8b48de7cbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page