Skip to main content

Portfolio Analysis, methods for portfolio optimization

Project description

pyPortfolioAnalysis

pyPortfolioAnalysis is a Python library for numeric method for portfolio optimisation.

Installation

Use the package manager pip to install pyPortfolioAnalysis.

Documentation is available as docstring, HTML or Text

pip install pyPortfolioAnalysis

Usage

from pyPortfolioAnalysis import *
import pandas as pd
#Sample portfolio optimisation
import pandas_datareader as pdr
aapl = pdr.get_data_yahoo('AAPL')
msft = pdr.get_data_yahoo('MSFT')
tsla = pdr.get_data_yahoo('TSLA')
uber = pdr.get_data_yahoo('UBER')
amzn = pdr.get_data_yahoo('AMZN')
port = pd.DataFrame({'aapl': pd.DataFrame.reset_index(aapl).iloc[:,6], 'msft':pd.DataFrame.reset_index(msft).iloc[:,6],
                   'tsla': pd.DataFrame.reset_index(tsla).iloc[:,6], 'uber': pd.DataFrame.reset_index(uber).iloc[:,6],
                    'amzn': pd.DataFrame.reset_index(amzn).iloc[:,6]})
port_ret = port.pct_change().dropna()
p1 = portfolio_spec(assets = ['AAPL', 'MSFT', 'TSLA', 'UBER', 'AMZN'])
add_constraint(p1, 'long_only')
add_constraint(p1, 'full_investment')
add_objective(p1, kind='return', name = 'mean', target = 0.002)
add_objective(p1, kind='risk', name = 'std', target = .018)
p1.port_summary()
constraints = get_constraints(p1)
p1.port_summary()

optimize_portfolio(port_ret, p1, optimize_method = 'DEoptim', disp = False)

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Authors

Anurag Agrawal

Contributors

Saloni Mangla

License

GPL3

References

Brian G. Peterson and Peter Carl (2018). PortfolioAnalytics: Portfolio Analysis, Including Numerical Methods for Optimization of Portfolios. R package version 1.1.0. https://CRAN.R-project.org/package=PortfolioAnalytics

Boudt, Kris and Lu, Wanbo and Peeters, Benedict, Higher Order Comoments of Multifactor Models and Asset Allocation (June 16, 2014). Available at SSRN: http://ssrn.com/abstract=2409603 or http://dx.doi.org/10.2139/ssrn.2409603

Chriss, Neil A and Almgren, Robert, Portfolios from Sorts (April 27, 2005). Available at SSRN: http://ssrn.com/abstract=720041 or http://dx.doi.org/10.2139/ssrn.720041

Meucci, Attilio, The Black-Litterman Approach: Original Model and Extensions (August 1, 2008). Shorter version in, THE ENCYCLOPEDIA OF QUANTITATIVE FINANCE, Wiley, 2010. Avail- able at SSRN: http://ssrn.com/abstract=1117574 or http://dx.doi.org/10.2139/ssrn.1117574

Meucci, Attilio, Fully Flexible Views: Theory and Practice (August 8, 2008). Fully Flexible Views: Theory and Practice, Risk, Vol. 21, No. 10, pp. 97-102, October 2008. Available at SSRN: http://ssrn.com/abstract=1213325

Scherer, Bernd and Martin, Doug, Modern Portfolio Optimization. Springer. 2005.

Shaw, William Thornton, Portfolio Optimization for VAR, CVaR, Omega and Utility with General Return Distributions: A Monte Carlo Approach for Long-Only and Bounded Short Portfolios with Optional Robustness and a Simplified Approach to Covariance Matching (June 1, 2011). Available at SSRN: http://ssrn.com/abstract=1856476 or http://dx.doi.org/10.2139/ssrn.1856476

Downloads

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyPortfolioAnalysis-1.0.2.tar.gz (29.7 kB view details)

Uploaded Source

Built Distribution

pyPortfolioAnalysis-1.0.2-py3.8.egg (63.4 kB view details)

Uploaded Source

File details

Details for the file pyPortfolioAnalysis-1.0.2.tar.gz.

File metadata

  • Download URL: pyPortfolioAnalysis-1.0.2.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for pyPortfolioAnalysis-1.0.2.tar.gz
Algorithm Hash digest
SHA256 40efdc04ca9205589451f153a042f330a5e1ec6344663e03a6052ea66ea02b61
MD5 89999a5728e82d44a359e16b5d318b57
BLAKE2b-256 40f27b697cdf2248619535f98952a749bcad23a8c7b4baf5cb44d30a15359baa

See more details on using hashes here.

File details

Details for the file pyPortfolioAnalysis-1.0.2-py3.8.egg.

File metadata

  • Download URL: pyPortfolioAnalysis-1.0.2-py3.8.egg
  • Upload date:
  • Size: 63.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for pyPortfolioAnalysis-1.0.2-py3.8.egg
Algorithm Hash digest
SHA256 3e0eae7807cd525bf0a7d36bf9e7357310739915e60dccd90689b7991aae84a0
MD5 bc561105d4e4b64ed2c9cf88c9152627
BLAKE2b-256 05829fdc29261781d710670f9bd6c8f339f59ae6148ede2b5a3866b2794be491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page