Skip to main content

No project description provided

Project description

PyRAPL

License: MIT Build Status

About

pyRAPL is a toolkit that measures the energy consumption of a machine during the execution of a python code.

pyRAPL uses the intel "Running Average Power Limit" (RAPL) technology that estimate power consumption of internal devices. This technology is only available on Intel CPU with Sandy Bridge architecture or higher.

pyRAPL can measure the energy consumption of the following devices :

  • CPU socket package
  • RAM (only on Xeon CPU architecture)

Installation

You can install pyRAPL with pip : pip install pyRAPL

Basic usage

Here are some basic usages of pyRAPL. Please understand that the measured energy consumption is not only the energy consumption of the code you are running. It's the global energy consumption of all the process running on the machine during this period. This includes also the operating system and other applications. That's why we recommend eliminating any extra programs that may alter the energy consumption of the machine where we run the experiments and keep only the code we want to measure its energy consumption (no extra applications such as graphical interface, background running task ...). This will give the closest measure to the real energy consumption of the measured code.

Decorate a function to measure its energy consumption

To measure the energy consumed by the machine during the execution of the function fun() run the following code :

import pyRAPL

pyRAPL.setup() 

@pyRAPL.measure
def fun():
	# Some stuff ...

fun()

This will print the recorded energy consumption of all the monitorable devices of the machine during the execution of function fun.

Configure the decorator specifying the device to monitor

You can easly specify which device and which socket to monitor using the parameters of the pyRAPL.setup function. For example, here, we only monitor the CPU power consumption on the socket 1. By default, pyRAPL monitors all the available devices of the machine's sockets.

import pyRAPL

pyRAPL.setup(devices=[pyRAPL.Device.PKG], socket_ids=[1])

@pyRAPL.measure
def fun():
	# Some stuff ...

fun()	

You can append the device pyRAPL.Device.DRAM to the devices parameter list to monitor RAM device too.

Configure the output of the decorator

If you want to handle data with different output than the standard one, you can configure the decorator with an Output instance from the pyRAPL.outputs module.

As an example if you want to write the recorded energy consumption in a csv file :

import pyRAPL

pyRAPL.setup()

csv_output = pyRAPL.outputs.CSVOutput('result.csv')

@pyRAPL.measure(output=csv_output)
def fun():
	# Some stuff ...

for _ in range(100):
	fun()

csv_output.save() 

This will produce a csv file of 100 lines. Each line containing the energy consumption recorded during one execution of the function fun. Other predefined Output classes exist to export data to Mongodb and Panda dataframe. You can also create your own Output class (see the documentation)

Measure the energy consumption of a piece of code

To measure the energy consumed by the machine during the execution of a given piece of code, run the following code :

import pyRAPL

pyRAPL.setup()
measure = pyRAPL.Measurement('toto')
measure.begin()

# ...
# Piece of code to measure energy consumption 
# ...

measure.end()

You can get the result of the measures using the property : measure.result this will return a Result instance.

You can also use an output to handle this results, for example with the csv output : measure.export(csv_output)

Miscellaneous

About

PyRAPL is an open-source project developed by the Spirals research group (University of Lille and Inria) that take part of the powerapi project.

The documentation is available here.

Mailing list

You can follow the latest news and asks questions by subscribing to our mailing list.

Contributing

If you would like to contribute code you can do so through GitHub by forking the repository and sending a pull request.

When submitting code, please make every effort to follow existing conventions and style in order to keep the code as readable as possible.

MIT License

Copyright (c) 2018, INRIA Copyright (c) 2018, University of Lille All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyRAPL-0.2.1.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

pyRAPL-0.2.1-py2.py3-none-any.whl (27.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyRAPL-0.2.1.tar.gz.

File metadata

  • Download URL: pyRAPL-0.2.1.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for pyRAPL-0.2.1.tar.gz
Algorithm Hash digest
SHA256 36be694901cde1436995f03bfe8be69c84e69fdb77a6b31b3a21e61bf8d72124
MD5 f8c6f5a6b6c2c022f8eba6408769ef4d
BLAKE2b-256 839774f1fa4e3819e1ede70fd1b14e79aa0ad691b33c6d8778f42502a0b486ac

See more details on using hashes here.

File details

Details for the file pyRAPL-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pyRAPL-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for pyRAPL-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 58049f0bc5c64d84658af9d11b6e3cabe150f21ebef3200e988d30b2bd29aff0
MD5 6fb82409eb9f702b8f46837f8c107316
BLAKE2b-256 3257fba2729c2b935e2d93153e21aad60183791d1f0bcdedb1ff7b16bab72fa1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page