Skip to main content

A python package for Paradigm Free Mapping (3dPFM and 3dMEPFM).

Project description

pySPFM

The Python version of AFNI's 3dPFM and 3dMEPFM with some extra features like the addition of a spatial regularization similar to the one used by Total Activation.

Latest Version PyPI - Python Version DOI License CircleCI Documentation Status codecov Code style: black pre-commit.ci status

References

  • Caballero-Gaudes, C., Moia, S., Panwar, P., Bandettini, P. A., & Gonzalez-Castillo, J. (2019). A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping. NeuroImage, 202, 116081–116081. https://doi.org/10.1016/j.neuroimage.2019.116081
  • Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., & Gowland, P. A. (2013). Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses. Human Brain Mapping. https://doi.org/10.1002/hbm.21452
  • Gaudes, C. C., Ville, D. V. D., Petridou, N., Lazeyras, F., & Gowland, P. (2011). Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data. Wavelets and Sparsity XIV, 8138, 81381K. https://doi.org/10.1117/12.893920
  • Karahanoǧlu, F. I., Caballero-Gaudes, C., Lazeyras, F., & Van De Ville, D. (2013). Total activation: FMRI deconvolution through spatio-temporal regularization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.01.067
  • Uruñuela, E., Bolton, T. A. W., Van De Ville, D., & Caballero-Gaudes, C. (2021). Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work. ArXiv:2107.12026 [q-Bio]. http://arxiv.org/abs/2107.12026

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspfm-0.0.1b20.tar.gz (63.3 kB view details)

Uploaded Source

Built Distribution

pyspfm-0.0.1b20-py3-none-any.whl (62.2 kB view details)

Uploaded Python 3

File details

Details for the file pyspfm-0.0.1b20.tar.gz.

File metadata

  • Download URL: pyspfm-0.0.1b20.tar.gz
  • Upload date:
  • Size: 63.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b20.tar.gz
Algorithm Hash digest
SHA256 41dfc134ecff028df951cb1f4db85eab61ecaa83dddae2616552f709735be0be
MD5 387de58d18b3b3703c87a790bc55e197
BLAKE2b-256 70e17baf566fc9532d0d374da5f20378e639a355f9fba7751e768deafe3cb5c0

See more details on using hashes here.

File details

Details for the file pyspfm-0.0.1b20-py3-none-any.whl.

File metadata

  • Download URL: pyspfm-0.0.1b20-py3-none-any.whl
  • Upload date:
  • Size: 62.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b20-py3-none-any.whl
Algorithm Hash digest
SHA256 2a3311470671cd2d53dcd85001ce305d67724ae9123d587337c253848ad82c86
MD5 698817ccfd4f4df0ea1a6cf7d544a52b
BLAKE2b-256 6d18e5ab39a3483c246a5948a29319fe993751b9e18505c3af0a808e65fdc134

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page