Skip to main content

A python package for Paradigm Free Mapping (3dPFM and 3dMEPFM).

Project description

pySPFM

The Python version of AFNI's 3dPFM and 3dMEPFM with some extra features like the addition of a spatial regularization similar to the one used by Total Activation.

Latest Version PyPI - Python Version DOI License CircleCI Documentation Status codecov Code style: black pre-commit

References

  • Caballero-Gaudes, C., Moia, S., Panwar, P., Bandettini, P. A., & Gonzalez-Castillo, J. (2019). A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping. NeuroImage, 202, 116081–116081. https://doi.org/10.1016/j.neuroimage.2019.116081
  • Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., & Gowland, P. A. (2013). Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses. Human Brain Mapping. https://doi.org/10.1002/hbm.21452
  • Gaudes, C. C., Ville, D. V. D., Petridou, N., Lazeyras, F., & Gowland, P. (2011). Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data. Wavelets and Sparsity XIV, 8138, 81381K. https://doi.org/10.1117/12.893920
  • Karahanoǧlu, F. I., Caballero-Gaudes, C., Lazeyras, F., & Van De Ville, D. (2013). Total activation: FMRI deconvolution through spatio-temporal regularization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.01.067
  • Uruñuela, E., Bolton, T. A. W., Van De Ville, D., & Caballero-Gaudes, C. (2021). Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work. ArXiv:2107.12026 [q-Bio]. http://arxiv.org/abs/2107.12026

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspfm-0.0.1b21.tar.gz (64.2 kB view details)

Uploaded Source

Built Distribution

pyspfm-0.0.1b21-py3-none-any.whl (63.7 kB view details)

Uploaded Python 3

File details

Details for the file pyspfm-0.0.1b21.tar.gz.

File metadata

  • Download URL: pyspfm-0.0.1b21.tar.gz
  • Upload date:
  • Size: 64.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b21.tar.gz
Algorithm Hash digest
SHA256 5ad226343969c02e3ce29e17b2036c3b5c01a6374a101715665bb4d12930fd71
MD5 1bd744b8cfda4a9f6f79bb95198a164d
BLAKE2b-256 d9a10a905256191e494f151c8ee5df3fa1c0a01162c6ded1d4cab7524ee83444

See more details on using hashes here.

File details

Details for the file pyspfm-0.0.1b21-py3-none-any.whl.

File metadata

  • Download URL: pyspfm-0.0.1b21-py3-none-any.whl
  • Upload date:
  • Size: 63.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b21-py3-none-any.whl
Algorithm Hash digest
SHA256 6ee96ca45e58bb548d3d5c1c0c19e3804283b80463b0708959fe2fd073c0690a
MD5 b74541e570191c963fd14324fe8f23a1
BLAKE2b-256 c176e446bfd157d4d97e126599ceda1f03d13c311f19fd72978e8a734e8609da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page