Skip to main content

A python package for Paradigm Free Mapping (3dPFM and 3dMEPFM).

Project description

pySPFM

The Python version of AFNI's 3dPFM and 3dMEPFM with some extra features like the addition of a spatial regularization similar to the one used by Total Activation.

Latest Version PyPI - Python Version DOI License CircleCI Documentation Status codecov Code style: black pre-commit

References

  • Caballero-Gaudes, C., Moia, S., Panwar, P., Bandettini, P. A., & Gonzalez-Castillo, J. (2019). A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping. NeuroImage, 202, 116081–116081. https://doi.org/10.1016/j.neuroimage.2019.116081
  • Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., & Gowland, P. A. (2013). Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses. Human Brain Mapping. https://doi.org/10.1002/hbm.21452
  • Gaudes, C. C., Ville, D. V. D., Petridou, N., Lazeyras, F., & Gowland, P. (2011). Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data. Wavelets and Sparsity XIV, 8138, 81381K. https://doi.org/10.1117/12.893920
  • Karahanoǧlu, F. I., Caballero-Gaudes, C., Lazeyras, F., & Van De Ville, D. (2013). Total activation: FMRI deconvolution through spatio-temporal regularization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.01.067
  • Uruñuela, E., Bolton, T. A. W., Van De Ville, D., & Caballero-Gaudes, C. (2021). Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work. ArXiv:2107.12026 [q-Bio]. http://arxiv.org/abs/2107.12026

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspfm-0.0.1b22.tar.gz (64.1 kB view details)

Uploaded Source

Built Distribution

pyspfm-0.0.1b22-py3-none-any.whl (63.7 kB view details)

Uploaded Python 3

File details

Details for the file pyspfm-0.0.1b22.tar.gz.

File metadata

  • Download URL: pyspfm-0.0.1b22.tar.gz
  • Upload date:
  • Size: 64.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b22.tar.gz
Algorithm Hash digest
SHA256 3996c4e102ac02426b9de0b9a8bbf752d4474045fbb78f057d8ad226e6483ecf
MD5 495b914e7336acd9d8a13ee6bc9f1745
BLAKE2b-256 ac0ae513762ee48ca60a1e34b2fc699655020a33443b1ad8786a46bb54172939

See more details on using hashes here.

File details

Details for the file pyspfm-0.0.1b22-py3-none-any.whl.

File metadata

  • Download URL: pyspfm-0.0.1b22-py3-none-any.whl
  • Upload date:
  • Size: 63.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyspfm-0.0.1b22-py3-none-any.whl
Algorithm Hash digest
SHA256 c9d0989a428c0467e76bc7ca7c0bef8b824f73628621c956ad805d9007f9e870
MD5 30430d86ce184f0d49eaa6eb0f68d4f3
BLAKE2b-256 b649839507084d4efaf063dde803524d54f7031c946fe5ad192026ecb5051a91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page