A python package for Paradigm Free Mapping (3dPFM and 3dMEPFM).
Project description
pySPFM
The Python version of AFNI's 3dPFM and 3dMEPFM with some extra features like the addition of a spatial regularization similar to the one used by Total Activation.
References
- Caballero-Gaudes, C., Moia, S., Panwar, P., Bandettini, P. A., & Gonzalez-Castillo, J. (2019). A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping. NeuroImage, 202, 116081–116081. https://doi.org/10.1016/j.neuroimage.2019.116081
- Caballero Gaudes, C., Petridou, N., Francis, S. T., Dryden, I. L., & Gowland, P. A. (2013). Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses. Human Brain Mapping. https://doi.org/10.1002/hbm.21452
- Gaudes, C. C., Ville, D. V. D., Petridou, N., Lazeyras, F., & Gowland, P. (2011). Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data. Wavelets and Sparsity XIV, 8138, 81381K. https://doi.org/10.1117/12.893920
- Karahanoǧlu, F. I., Caballero-Gaudes, C., Lazeyras, F., & Van De Ville, D. (2013). Total activation: FMRI deconvolution through spatio-temporal regularization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.01.067
- Uruñuela, E., Bolton, T. A. W., Van De Ville, D., & Caballero-Gaudes, C. (2021). Hemodynamic Deconvolution Demystified: Sparsity-Driven Regularization at Work. ArXiv:2107.12026 [q-Bio]. http://arxiv.org/abs/2107.12026
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyspfm-0.0.1b22.tar.gz
(64.1 kB
view details)
Built Distribution
pyspfm-0.0.1b22-py3-none-any.whl
(63.7 kB
view details)
File details
Details for the file pyspfm-0.0.1b22.tar.gz
.
File metadata
- Download URL: pyspfm-0.0.1b22.tar.gz
- Upload date:
- Size: 64.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3996c4e102ac02426b9de0b9a8bbf752d4474045fbb78f057d8ad226e6483ecf |
|
MD5 | 495b914e7336acd9d8a13ee6bc9f1745 |
|
BLAKE2b-256 | ac0ae513762ee48ca60a1e34b2fc699655020a33443b1ad8786a46bb54172939 |
File details
Details for the file pyspfm-0.0.1b22-py3-none-any.whl
.
File metadata
- Download URL: pyspfm-0.0.1b22-py3-none-any.whl
- Upload date:
- Size: 63.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9d0989a428c0467e76bc7ca7c0bef8b824f73628621c956ad805d9007f9e870 |
|
MD5 | 30430d86ce184f0d49eaa6eb0f68d4f3 |
|
BLAKE2b-256 | b649839507084d4efaf063dde803524d54f7031c946fe5ad192026ecb5051a91 |