Skip to main content

Scattering of array of spheres, scalar theory

Project description

pyScatSpheres

Package for solving the scalar wave equation with a linear array of scattering spheres. Possibility to solve for constant potential well and hard spheres i.e. infinite potential.

Installation

pip install pyScatSpheres

The installation requires external system based installations :

  • Fortran compiler : to run external library py3nj
  • optional tex compiler : necessary for the figures to be displayed in latex text.

Those packages can be installed on linux with

  • apt-get install gfortran
  • apt-get install tex-live

Using the GUI

A gui is available to interactively display pre calculated solutions.

import os
from pyScatSpheres import gui_base as hsa_gui

#fetch built-in solution
df_path=os.path.dirname(hsa_gui.__file__)+'/data/qdotSphereArray2_kp0.pkl'
hsa_e = hsa_gui.GUI_handler(df_path)

Using the API

New sets of solution can be calculated and solved to a pickle using the API.

import numpy as np
import pandas as pd
from pyScatSpheres import qdot_sphere_array as qsa
from pyScatSpheres import glob_colors as colors

kas = [0.5,2,5]
kds = [2,5,10]
kps = [1.2]
kas,kps,kds = np.meshgrid(kas,kps,kds)
kas,kps,kds = kas.flatten(),kps.flatten(),kds.flatten()
cols = ['N','ka','kp','kd','nmax','sigma','ap','bp']
df = pd.DataFrame(columns=cols)
for ka,kp,kd in zip(kas,kps,kds):
    nmax = max(int(np.ceil(1.3*ka)),int(ka)+4)
    s = qsa.QdotSphereArray(N=N,ka=ka,kp=kp,kd=kd*ka,nmax=10,solve=1,copt=1)
    sig = s.get_s(npts=1000)
    df=df.append(dict(zip(cols,[s.N,s.ka,s.kp,s.kd,s.nmax,sig,s.ap,s.bp])),ignore_index=True)
df.to_pickle(df_name)
print(colors.green+'DataFrame saved:\n'+ colors.yellow+df_name+colors.black)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyScatSpheres-1.0.4.tar.gz (5.4 MB view details)

Uploaded Source

Built Distribution

pyScatSpheres-1.0.4-py3-none-any.whl (2.0 MB view details)

Uploaded Python 3

File details

Details for the file pyScatSpheres-1.0.4.tar.gz.

File metadata

  • Download URL: pyScatSpheres-1.0.4.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyScatSpheres-1.0.4.tar.gz
Algorithm Hash digest
SHA256 69ca63d04b72ce0c0087d42462f9a7c8352beee6df045fb479704a5d747d4973
MD5 81cfee7361282636685a5da27385be3c
BLAKE2b-256 958c8f41c775faaf85872328356ee7860ab567624fadca14fdc800862f29c50b

See more details on using hashes here.

Provenance

File details

Details for the file pyScatSpheres-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: pyScatSpheres-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyScatSpheres-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 338da03f3424ded0d0b7b06980bbd72642c3433e85a658a6a313eaa691695bcb
MD5 1c942f8161cd2b2e33684db90458fc64
BLAKE2b-256 206c2cc44ef1fb271460143a3b091000cf42543b70340c022c797066dce49a4c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page