Skip to main content

A powerfull python tool to create truth tables for logical analysis

Project description



What is pyTruthTable?

This library uses Pandas's dataframe to create logical relations between it's columns. E.g. you can call l_implies(df, n ,m) that will return a dataframe column with the logical operation "implies" between the column m and n (m → n). The function also names header of the column joining both columns' name with the operation symbol.

How to use?

  • Download the file pyTruthTable.py in this repository
  • Import the methods using:
from pyTruthTable import * #Import all methods from pyTruthTable

Examples

Example 1

import pandas as pd
from pyTruthTable import * #Import all methods from pyTruthTable

# intialise firs columns.
df = pd.DataFrame({'A':[True, True, False, False],
                   'B':[True, False, True, False]})

# Create other collumns of the dataframe calling methods
df = df.join(l_implies(df, 0 ,1)) # Thrid   column: a->b
df = df.join(l_not(df, 1))        # Forth   column: not b
df = df.join(l_and(df, 0, 1))     # Fith    column: a and b
df = df.join(l_or(df, 0, 1))      # Sixth   column: a or b
df = df.join(l_equals(df, 4, 5))  # Seventh column: fith column <-> sixth column
print(df)
A B A → B ¬B A ^ B A ∨ B (A ^ B) ↔ (A ∨ B)
0 True True True False True True True
1 True False False True False True False
2 False True True False False True False
3 False False True True False False True

Example 2

import pandas as pd
from pyTruthTable import * #Import all methods from pyTruthTable

data = {'Hot':[True, True,True, True, False, False, False, False], # 0
        'Wet':[True, True, False, False, True, True, False, False], # 1
        'Rains':[True, False, True, False, True, False, True, False]} # 2
df = pd.DataFrame(data)

df = df.join(l_and(df,0,1)) # 3
df = df.join(l_implies(df,3,2)) # 4
df
Hot Wet Rains (Hot) ^ (Wet) ((Hot) ^ (Wet)) → (Rains)
0 True True True True True
1 True True False True False
2 True False True False True
3 True False False False True
4 False True True False True
5 False True False False True
6 False False True False True
7 False False False False True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyTruthTable-0.0.1.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

pyTruthTable-0.0.1-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file pyTruthTable-0.0.1.tar.gz.

File metadata

  • Download URL: pyTruthTable-0.0.1.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.9

File hashes

Hashes for pyTruthTable-0.0.1.tar.gz
Algorithm Hash digest
SHA256 f4a7a62639e589b8adb81a3d9310af3ca05ac4fccfbabcbdf658c83e4c14549a
MD5 9350f7b712811c0c733773308c492733
BLAKE2b-256 d0b6a1abeaa757f778b67a6271a990243e00eda9061a90c98ae06ebaf1ab3c7b

See more details on using hashes here.

File details

Details for the file pyTruthTable-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyTruthTable-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.9

File hashes

Hashes for pyTruthTable-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a7c5033f9e9ca86ad029422d4d17eca4fb66f416a42b1747a0ab603d10d9d665
MD5 fdb10f1df56f83a36a0fb03b3c475dc2
BLAKE2b-256 4ebe551c41d3796276bc71ccd969bee2b0fae02a73b03106abdde6cafb652503

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page